論文の概要: Grid Diffusion Models for Text-to-Video Generation
- arxiv url: http://arxiv.org/abs/2404.00234v1
- Date: Sat, 30 Mar 2024 03:50:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 06:36:22.066435
- Title: Grid Diffusion Models for Text-to-Video Generation
- Title(参考訳): テキスト・ビデオ生成のためのグリッド拡散モデル
- Authors: Taegyeong Lee, Soyeong Kwon, Taehwan Kim,
- Abstract要約: 既存のビデオ生成手法の多くは、時間次元を考慮した3D U-Netアーキテクチャまたは自己回帰生成を使用する。
アーキテクチャにおける時間次元を伴わないテキスト・ビデオ生成と大規模なテキスト・ビデオ・ペア・データセットのための,単純だが効果的な新しいグリッド拡散法を提案する。
提案手法は,定量評価と定性評価の両方において既存手法より優れている。
- 参考スコア(独自算出の注目度): 2.531998650341267
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advances in the diffusion models have significantly improved text-to-image generation. However, generating videos from text is a more challenging task than generating images from text, due to the much larger dataset and higher computational cost required. Most existing video generation methods use either a 3D U-Net architecture that considers the temporal dimension or autoregressive generation. These methods require large datasets and are limited in terms of computational costs compared to text-to-image generation. To tackle these challenges, we propose a simple but effective novel grid diffusion for text-to-video generation without temporal dimension in architecture and a large text-video paired dataset. We can generate a high-quality video using a fixed amount of GPU memory regardless of the number of frames by representing the video as a grid image. Additionally, since our method reduces the dimensions of the video to the dimensions of the image, various image-based methods can be applied to videos, such as text-guided video manipulation from image manipulation. Our proposed method outperforms the existing methods in both quantitative and qualitative evaluations, demonstrating the suitability of our model for real-world video generation.
- Abstract(参考訳): 拡散モデルの最近の進歩は、テキスト・画像生成を大幅に改善した。
しかし、より大きなデータセットと高い計算コストのために、テキストからビデオを生成することは、テキストから画像を生成するよりも難しい作業である。
既存のビデオ生成手法の多くは、時間次元を考慮した3D U-Netアーキテクチャまたは自己回帰生成を使用する。
これらの手法は大規模なデータセットを必要とし、テキスト・ツー・イメージ生成と比較して計算コストに制限がある。
これらの課題に対処するために、アーキテクチャの時間次元と大規模なテキスト-ビデオペア化データセットを使わずに、テキスト-ビデオ生成のための単純かつ効果的な新しいグリッド拡散を提案する。
我々は,映像をグリッド画像として表現することにより,フレーム数に関係なく,一定量のGPUメモリを用いて高品質な映像を生成することができる。
さらに,本手法は映像の寸法を画像の寸法に還元するので,テキスト誘導による画像操作など,様々な画像ベースの手法をビデオに適用することができる。
提案手法は,実世界の映像生成におけるモデルの有効性を実証し,定量評価と定性評価の両面で既存手法より優れていることを示す。
関連論文リスト
- Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
ダイナミックスビデオのモデリングのため、ビデオ事前トレーニングは難しい。
本稿では,ビデオ事前学習におけるこのような制限を,効率的なビデオ分解によって解決する。
筆者らのフレームワークは,13のマルチモーダルベンチマークにおいて,画像と映像のコンテントの理解と生成が可能であることを実証した。
論文 参考訳(メタデータ) (2024-02-05T16:30:49Z) - VideoGen: A Reference-Guided Latent Diffusion Approach for High
Definition Text-to-Video Generation [73.54366331493007]
VideoGenはテキスト・ツー・ビデオ生成方式であり、フレームの忠実度が高く、時間的一貫性の強い高精細なビデオを生成することができる。
我々は,テキストプロンプトから高品質な画像を生成するために,既製のテキスト画像生成モデル,例えば,安定拡散(Stable Diffusion)を利用する。
論文 参考訳(メタデータ) (2023-09-01T11:14:43Z) - Gen-L-Video: Multi-Text to Long Video Generation via Temporal
Co-Denoising [43.35391175319815]
本研究では,複数テキスト条件付き長編ビデオの生成と編集にテキスト駆動能力を拡張する可能性について検討する。
我々は,市販のビデオ拡散モデルの拡張が可能なGen-L-Videoという新しいパラダイムを導入する。
実験結果から,本手法は映像拡散モデルの生成・編集能力を著しく拡張することが明らかとなった。
論文 参考訳(メタデータ) (2023-05-29T17:38:18Z) - Swap Attention in Spatiotemporal Diffusions for Text-to-Video Generation [55.36617538438858]
本研究では,空間的知覚と時間的知覚の相互作用を強化する新しいアプローチを提案する。
我々はHD-VG-130Mという大規模かつオープンソースのビデオデータセットをキュレートする。
論文 参考訳(メタデータ) (2023-05-18T11:06:15Z) - Imagen Video: High Definition Video Generation with Diffusion Models [64.06483414521222]
Imagen Videoは、ビデオ拡散モデルのカスケードに基づくテキスト条件付きビデオ生成システムである。
我々は高精細度ビデオを生成することができるが、高い可制御性と世界的知識を持つ画像n Videoを見いだす。
論文 参考訳(メタデータ) (2022-10-05T14:41:38Z) - Make-A-Video: Text-to-Video Generation without Text-Video Data [69.20996352229422]
Make-A-Videoは、テキスト・トゥ・イメージ(T2I)生成における最新の進歩をテキスト・トゥ・ビデオ(T2V)に変換するアプローチである。
我々は,新しい空間時空間モジュールを用いたT2Iモデル上に構築する,シンプルで効果的な手法を設計する。
空間的および時間的解像度、テキストへの忠実さ、品質など、あらゆる面で、Make-A-Videoは、テキスト・ビデオ生成における新しい最先端を定めている。
論文 参考訳(メタデータ) (2022-09-29T13:59:46Z) - Video Generation from Text Employing Latent Path Construction for
Temporal Modeling [70.06508219998778]
ビデオ生成は、機械学習とコンピュータビジョンの分野における最も困難なタスクの1つである。
本稿では,映像生成の条件形式であるテキストから映像生成の問題に取り組む。
自然言語文からのビデオ生成が人工知能に重要な影響を与えると考えている。
論文 参考訳(メタデータ) (2021-07-29T06:28:20Z) - TiVGAN: Text to Image to Video Generation with Step-by-Step Evolutionary
Generator [34.7504057664375]
本稿では、フレーム単位で進化し、最終的にフル長のビデオを生成する新しいトレーニングフレームワーク、Text-to-Image-to-Video Generative Adversarial Network (TiVGAN)を提案する。
ステップバイステップの学習プロセスは、トレーニングの安定化を支援し、条件付きテキスト記述に基づく高解像度ビデオの作成を可能にする。
論文 参考訳(メタデータ) (2020-09-04T06:33:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。