論文の概要: VideoAuteur: Towards Long Narrative Video Generation
- arxiv url: http://arxiv.org/abs/2501.06173v1
- Date: Fri, 10 Jan 2025 18:52:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:27:14.551851
- Title: VideoAuteur: Towards Long Narrative Video Generation
- Title(参考訳): VideoAuteur:ロングナラティブなビデオ生成を目指して
- Authors: Junfei Xiao, Feng Cheng, Lu Qi, Liangke Gui, Jiepeng Cen, Zhibei Ma, Alan Yuille, Lu Jiang,
- Abstract要約: 本稿では,調理領域における長めの物語生成を促進するために,大規模な調理ビデオデータセットを提案する。
生成ビデオにおける視覚的・意味的コヒーレンスを高めるために,Long Narrative Video Directorを導入する。
本手法は,視覚的細部および意味的整合性の生成における大幅な改善を示す。
- 参考スコア(独自算出の注目度): 22.915448471769384
- License:
- Abstract: Recent video generation models have shown promising results in producing high-quality video clips lasting several seconds. However, these models face challenges in generating long sequences that convey clear and informative events, limiting their ability to support coherent narrations. In this paper, we present a large-scale cooking video dataset designed to advance long-form narrative generation in the cooking domain. We validate the quality of our proposed dataset in terms of visual fidelity and textual caption accuracy using state-of-the-art Vision-Language Models (VLMs) and video generation models, respectively. We further introduce a Long Narrative Video Director to enhance both visual and semantic coherence in generated videos and emphasize the role of aligning visual embeddings to achieve improved overall video quality. Our method demonstrates substantial improvements in generating visually detailed and semantically aligned keyframes, supported by finetuning techniques that integrate text and image embeddings within the video generation process. Project page: https://videoauteur.github.io/
- Abstract(参考訳): 最近のビデオ生成モデルは、数秒間続く高品質なビデオクリップを作成するという有望な結果を示している。
しかしながら、これらのモデルは、明確で情報的な出来事を伝達する長いシーケンスを生成することの課題に直面し、コヒーレントなナレーションをサポートする能力を制限する。
本稿では,調理領域における長文ナラティブ生成の促進を目的とした大規模調理ビデオデータセットを提案する。
現状の視覚言語モデル(VLM)とビデオ生成モデルを用いて,視覚的忠実度とテキストキャプション精度の観点から,提案したデータセットの品質を検証した。
さらに、生成ビデオにおける視覚的コヒーレンスと意味的コヒーレンスを高めるために、Long Narrative Video Directorを導入し、ビデオ全体の品質を改善するために、視覚的埋め込みを整合させることの重要性を強調した。
本手法は,映像生成プロセスにテキストや画像の埋め込みを組み込んだ微調整技術により,視覚的に詳細かつセマンティックに整合したキーフレームを生成する上で,大幅な改善を示す。
プロジェクトページ: https://videoauteur.github.io/
関連論文リスト
- MovieDreamer: Hierarchical Generation for Coherent Long Visual Sequence [62.72540590546812]
MovieDreamerは、自己回帰モデルの強みと拡散ベースのレンダリングを統合する、新しい階層的なフレームワークである。
様々な映画ジャンルにまたがって実験を行い、そのアプローチが優れた視覚的・物語的品質を実現することを示す。
論文 参考訳(メタデータ) (2024-07-23T17:17:05Z) - InternVideo2: Scaling Foundation Models for Multimodal Video Understanding [51.129913789991924]
InternVideo2は、ビデオファウンデーションモデル(FM)の新たなファミリーで、ビデオ認識、ビデオ音声タスク、ビデオ中心タスクの最先端の結果を達成する。
私たちのコアデザインは、マスク付きビデオモデリング、クロスコントラスト学習、予測トークンを統合し、最大6Bビデオサイズまでスケールアップするプログレッシブトレーニングアプローチです。
論文 参考訳(メタデータ) (2024-03-22T17:57:42Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
ダイナミックスビデオのモデリングのため、ビデオ事前トレーニングは難しい。
本稿では,ビデオ事前学習におけるこのような制限を,効率的なビデオ分解によって解決する。
筆者らのフレームワークは,13のマルチモーダルベンチマークにおいて,画像と映像のコンテントの理解と生成が可能であることを実証した。
論文 参考訳(メタデータ) (2024-02-05T16:30:49Z) - MEVG: Multi-event Video Generation with Text-to-Video Models [18.06640097064693]
本稿では,ユーザから複数の個々の文が与えられた複数のイベントを示すビデオを生成する,拡散に基づく新しいビデオ生成手法を提案する。
本手法は, 微調整処理を伴わずに, 事前学習したテキスト・ビデオ生成モデルを使用するため, 大規模なビデオデータセットを必要としない。
提案手法は,コンテンツとセマンティクスの時間的コヒーレンシーの観点から,他のビデオ生成モデルよりも優れている。
論文 参考訳(メタデータ) (2023-12-07T06:53:25Z) - SEINE: Short-to-Long Video Diffusion Model for Generative Transition and
Prediction [93.26613503521664]
本稿では、生成遷移と予測に焦点をあてた、短時間から長期のビデオ拡散モデルSEINEを提案する。
テキスト記述に基づく遷移を自動的に生成するランダムマスクビデオ拡散モデルを提案する。
我々のモデルは、コヒーレンスと視覚的品質を保証するトランジションビデオを生成する。
論文 参考訳(メタデータ) (2023-10-31T17:58:17Z) - VideoGen: A Reference-Guided Latent Diffusion Approach for High
Definition Text-to-Video Generation [73.54366331493007]
VideoGenはテキスト・ツー・ビデオ生成方式であり、フレームの忠実度が高く、時間的一貫性の強い高精細なビデオを生成することができる。
我々は,テキストプロンプトから高品質な画像を生成するために,既製のテキスト画像生成モデル,例えば,安定拡散(Stable Diffusion)を利用する。
論文 参考訳(メタデータ) (2023-09-01T11:14:43Z) - Video Generation Beyond a Single Clip [76.5306434379088]
ビデオ生成モデルは、実際のビデオの長さと比較して比較的短いビデオクリップしか生成できない。
多様なコンテンツや複数のイベントをカバーした長いビデオを生成するために,ビデオ生成プロセスを制御するための追加のガイダンスを提案する。
提案手法は、固定時間ウィンドウ内でリアルな映像を生成することに焦点を当てた、既存の映像生成の取り組みを補完するものである。
論文 参考訳(メタデータ) (2023-04-15T06:17:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。