Twisted charged particles in the uniform magnetic field with broken symmetry
- URL: http://arxiv.org/abs/2404.00283v2
- Date: Mon, 27 May 2024 08:13:24 GMT
- Title: Twisted charged particles in the uniform magnetic field with broken symmetry
- Authors: N. V. Filina, S. S. Baturin,
- Abstract summary: We present a theoretical description of charged particles with nonzero projection of the orbital angular momentum (OAM) in a uniform magnetic field with broken axial symmetry.
We analyze the asymmetric Hamiltonian from an algebraic point of view and show how the OAM projection of the twisted state is modified by symmetry breaking.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a theoretical description of charged particles with nonzero projection of the orbital angular momentum (OAM) in a uniform magnetic field with broken axial symmetry. The wave functions we find naturally account for the asymmetry of the magnetic field at the entrance of the solenoid through the continuous parameter and are a generalization of the Laguerre-Gauss states commonly used to describe twisted charged particles. We analyze the asymmetric Hamiltonian from an algebraic point of view and show how the OAM projection of the twisted state is modified by symmetry breaking. We provide analytical frameworks for properties of the asymmetric states, such as energy, RMS size, and Cazimir invariant, and discuss advantages of the proposed description.
Related papers
- Acoustic higher-order topological insulator from momentum-space nonsymmorphic symmetries [18.632378628061844]
Momentum-space nonsymmorphic symmetries can modify the manifold of the Brillouin zone and lead to a variety of topological phenomena.
We present an acoustic realization of higher-order topological insulators protected by a pair of momentum-space glide reflections.
arXiv Detail & Related papers (2024-09-12T16:35:42Z) - Entanglement asymmetry in conformal field theory and holography [0.0]
Entanglement asymmetry is a measure of symmetry breaking in quantum subsystems.
We study the asymmetry of a class of excited "coherent states" in conformal quantum field theories with a U(1) symmetry.
arXiv Detail & Related papers (2024-07-10T18:08:27Z) - Non-Fermi Liquids from Dipolar Symmetry Breaking [5.644838430210339]
We study the properties of symmetry-breaking phases of the dipolar symmetries in fermionic models in various spatial dimensions.
The Goldstone modes of the dipolar condensate are strongly coupled to the dispersive fermions and naturally give rise to non-Fermi liquids at low energies.
arXiv Detail & Related papers (2023-04-03T17:50:59Z) - Fast electrons interacting with chiral matter: mirror symmetry breaking
of quantum decoherence and lateral momentum transfer [91.3755431537592]
We show that matter chirality breaks mirror symmetry of scattered electrons quantum decoherence.
We also prove that mirror asymmetry also shows up in the distribution of the electron lateral momentum.
arXiv Detail & Related papers (2022-04-07T15:06:27Z) - Lorentz and gauge invariance of quantum space [0.0]
We derive a discrete picture of the space that respects Lorentz symmetry as well as gauge symmetry.
This discreteness may explain the crystal and quasicrystal structures observed in nature at different energy scales.
arXiv Detail & Related papers (2022-01-29T14:45:29Z) - Chiral Dirac-like fermion in spin-orbit-free antiferromagnetic
semimetals [21.85167942898987]
Dirac semimetal is a phase of matter, whose elementary excitation is described by the relativistic Dirac equation.
Inspired by the flavor symmetry in particle physics, we propose a massless Dirac-like equation yet linking two Weyl fields with the identical chirality.
Our work reveals a counterpart of the flavor symmetry in magnetic electronic systems, leading to further possibilities of emergent phenomena in quantum materials.
arXiv Detail & Related papers (2021-07-21T09:56:14Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Latent symmetry induced degeneracies [0.0]
We develop an approach to explain degeneracies by tracing them back to symmetries of an isospectral effective Hamiltonian.
As an application, we relate the degeneracies induced by the rotation symmetry of a real Hamiltonian to a non-abelian latent symmetry group.
arXiv Detail & Related papers (2020-11-26T17:37:30Z) - Crystalline gauge fields and quantized discrete geometric response for
Abelian topological phases with lattice symmetry [0.0]
We develop a theory of symmetry-protected quantized invariants for topological phases defined on a lattice.
We show how discrete rotational and translational symmetry fractionalization can be characterized by a discrete spin vector.
The fractionally quantized charge polarization, which is non-trivial only on a lattice with $2$, $3$, and $4$-fold rotation symmetry, implies a fractional charge bound to lattice dislocations.
arXiv Detail & Related papers (2020-05-20T18:00:05Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Mode Decomposed Chiral Magnetic Effect and Rotating Fermions [19.000723109146197]
We find that the vector current and the chirality density are connected through a surprisingly simple relation for all the modes and any mass.
For demonstration we give an intuitive account for a nonzero density emerging from a combination of rotation and magnetic field.
arXiv Detail & Related papers (2020-04-13T10:10:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.