論文の概要: CLIP-driven Outliers Synthesis for few-shot OOD detection
- arxiv url: http://arxiv.org/abs/2404.00323v1
- Date: Sat, 30 Mar 2024 11:28:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 04:20:25.950535
- Title: CLIP-driven Outliers Synthesis for few-shot OOD detection
- Title(参考訳): 数ショットOOD検出のためのCLIP駆動型アウトリアス合成
- Authors: Hao Sun, Rundong He, Zhongyi Han, Zhicong Lin, Yongshun Gong, Yilong Yin,
- Abstract要約: OOD検出は、トレーニング中に見つからないクラスに属するOOD(out-of-distriion)画像を認識することに焦点を当てている。
今のところ、主要な戦略はCLIPのような大規模ビジョン言語モデルに基づいている。
信頼性の高いOOD監視情報の欠如を克服するために,CLIP-OS(CLIP-driven Outliers Synthesis)を提案する。
- 参考スコア(独自算出の注目度): 40.6496321698913
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Few-shot OOD detection focuses on recognizing out-of-distribution (OOD) images that belong to classes unseen during training, with the use of only a small number of labeled in-distribution (ID) images. Up to now, a mainstream strategy is based on large-scale vision-language models, such as CLIP. However, these methods overlook a crucial issue: the lack of reliable OOD supervision information, which can lead to biased boundaries between in-distribution (ID) and OOD. To tackle this problem, we propose CLIP-driven Outliers Synthesis~(CLIP-OS). Firstly, CLIP-OS enhances patch-level features' perception by newly proposed patch uniform convolution, and adaptively obtains the proportion of ID-relevant information by employing CLIP-surgery-discrepancy, thus achieving separation between ID-relevant and ID-irrelevant. Next, CLIP-OS synthesizes reliable OOD data by mixing up ID-relevant features from different classes to provide OOD supervision information. Afterward, CLIP-OS leverages synthetic OOD samples by unknown-aware prompt learning to enhance the separability of ID and OOD. Extensive experiments across multiple benchmarks demonstrate that CLIP-OS achieves superior few-shot OOD detection capability.
- Abstract(参考訳): OOD検出は、トレーニング中に目に見えないクラスに属するオフ・オブ・ディストリビューション(OOD)画像の認識に重点を置いており、少数のラベル付きイン・ディストリビューション(ID)画像のみを使用する。
今のところ、主要な戦略はCLIPのような大規模ビジョン言語モデルに基づいている。
しかし、これらの手法は、信頼性の高いOOD監視情報の欠如により、流通内(ID)とOODの境界に偏りが生じるという重大な問題を見落としている。
この問題に対処するため,CLIP-driven Outliers Synthesis~(CLIP-OS)を提案する。
第一に、CLIP-OSは、新しく提案されたパッチ均一な畳み込みによりパッチレベルの特徴の知覚を高め、CLIP-surgery-discrepancyを用いてID関連情報の比率を適応的に取得し、ID関連とID関連情報の分離を実現する。
次に、CLIP-OSは、異なるクラスからID関連機能を混合して信頼性の高いOODデータを合成し、OOD監視情報を提供する。
その後、CLIP-OSは未知のプロンプト学習による合成OODサンプルを活用し、IDとOODの分離性を高める。
複数のベンチマークにわたる大規模な実験により、CLIP-OSはより優れた数発のOOD検出能力を達成することが示された。
関連論文リスト
- Rethinking the Evaluation of Out-of-Distribution Detection: A Sorites Paradox [70.57120710151105]
既存のアウト・オブ・ディストリビューション(OOD)検出ベンチマークは、サンプルを新しいラベルでOODデータとして分類する。
いくつかの限界OODサンプルは、実際には分布内(ID)サンプルに密接なセマンティック内容を持ち、OODサンプルをソリテスパラドックス(英語版)と判定する。
この問題に対処するため,Incremental Shift OOD (IS-OOD) というベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-14T09:27:56Z) - CLIPScope: Enhancing Zero-Shot OOD Detection with Bayesian Scoring [16.0716584170549]
ゼロショットOOD検出手法であるCLIPScopeを導入する。
CLIPScopeは、大きな語彙データベースからOODクラスをマイニングするための新しい戦略を取り入れている。
OODサンプルのカバレッジを最大化するために、CLIP埋め込み距離の観点から、最も多く、最もIDクラスに最も近いクラスラベルを選択する。
論文 参考訳(メタデータ) (2024-05-23T16:03:55Z) - Out-of-Distribution Detection Using Peer-Class Generated by Large Language Model [0.0]
アウト・オブ・ディストリビューション(OOD)検出は、マシンラーニングモデルの信頼性とセキュリティを確保するための重要なタスクである。
本稿では,ODPCと呼ばれる新しい手法を提案し,大規模言語モデルを用いてOODピア・セマンティクスのクラスを生成する。
5つのベンチマークデータセットの実験により,提案手法は最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2024-03-20T06:04:05Z) - ID-like Prompt Learning for Few-Shot Out-of-Distribution Detection [47.16254775587534]
本稿では,CLIP citeDBLP:conf/icml/RadfordKHRGASAM21を用いて,IDライクな外れ値を検出する新しいOOD検出フレームワークを提案する。
強力なCLIPから恩恵を受けるため、モデルのプロンプトを学習するためには、少数のIDサンプルしか必要ありません。
本手法は,様々な実世界の画像データセットにおいて,より優れた数ショット学習性能を実現する。
論文 参考訳(メタデータ) (2023-11-26T09:06:40Z) - Distilling the Unknown to Unveil Certainty [66.29929319664167]
標準ネットワークがトレーニングされるIDデータから逸脱するテストサンプルを特定するためには、アウト・オブ・ディストリビューション(OOD)検出が不可欠である。
本稿では,IDデータのトレーニングが可能であるか否かを問う,先駆的な学習フレームワークであるOODナレッジ蒸留について紹介する。
論文 参考訳(メタデータ) (2023-11-14T08:05:02Z) - OOD Aware Supervised Contrastive Learning [13.329080722482187]
アウト・オブ・ディストリビューション(OOD)検出は、機械学習モデルの安全なデプロイにおいて重要な問題である。
我々は、Supervised Contrastive (SupCon)トレーニングで学んだ強力な表現を活用し、OODデータに対する堅牢性を学ぶための総合的なアプローチを提案する。
我々の解は単純で効率的であり、閉集合教師付きコントラスト表現学習の自然な拡張として機能する。
論文 参考訳(メタデータ) (2023-10-03T10:38:39Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
アウト・オブ・ディストリビューション(OOD)検出は、イン・ディストリビューション(ID)トレーニングプロセス中にラベルが見られない未知のデータを検出することを目的としている。
近年の表現学習の進歩により,距離に基づくOOD検出がもたらされる。
グローバルな視覚情報と局所的な情報の両方を活用する第1のフレームワークであるマルチスケールOOD検出(MODE)を提案する。
論文 参考訳(メタデータ) (2023-08-20T11:56:25Z) - LoCoOp: Few-Shot Out-of-Distribution Detection via Prompt Learning [37.36999826208225]
本稿では,数発のアウト・オブ・ディストリビューション(OOD)検出のための新しい視覚言語プロンプト学習手法を提案する。
LoCoOpは、トレーニング中にCLIPローカル機能の一部をOOD機能として利用するOOD正規化を実行する。
LoCoOpは、既存のゼロショットと完全に教師付き検出方法より優れている。
論文 参考訳(メタデータ) (2023-06-02T06:33:08Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
簡単な再構築手法を用いることで,OOD検出の性能が大幅に向上する可能性が示唆された。
我々は、OOD検出フレームワーク(MOOD)のプリテキストタスクとして、マスケ画像モデリング(Masked Image Modeling)を採用する。
論文 参考訳(メタデータ) (2023-02-06T08:24:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。