論文の概要: End-to-end data-driven weather forecasting
- arxiv url: http://arxiv.org/abs/2404.00411v2
- Date: Wed, 10 Jul 2024 16:12:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 21:20:03.924885
- Title: End-to-end data-driven weather forecasting
- Title(参考訳): エンドツーエンドのデータ駆動天気予報
- Authors: Anna Vaughan, Stratis Markou, Will Tebbutt, James Requeima, Wessel P. Bruinsma, Tom R. Andersson, Michael Herzog, Nicholas D. Lane, Matthew Chantry, J. Scott Hosking, Richard E. Turner,
- Abstract要約: Aardvark Weatherは、エンドツーエンドのデータ駆動型天気予報システムである。
生の観測を取り込み、グローバルなグリッド化された予測とローカルステーションの予測を出力する。
興味事の量よりもパフォーマンスを最大化するために、エンドツーエンドに最適化することができる。
- 参考スコア(独自算出の注目度): 30.219727555662267
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Weather forecasting is critical for a range of human activities including transportation, agriculture, industry, as well as the safety of the general public. Machine learning models have the potential to transform the complex weather prediction pipeline, but current approaches still rely on numerical weather prediction (NWP) systems, limiting forecast speed and accuracy. Here we demonstrate that a machine learning model can replace the entire operational NWP pipeline. Aardvark Weather, an end-to-end data-driven weather prediction system, ingests raw observations and outputs global gridded forecasts and local station forecasts. Further, it can be optimised end-to-end to maximise performance over quantities of interest. Global forecasts outperform an operational NWP baseline for multiple variables and lead times. Local station forecasts are skillful up to ten days lead time and achieve comparable and often lower errors than a post-processed global NWP baseline and a state-of-the-art end-to-end forecasting system with input from human forecasters. These forecasts are produced with a remarkably simple neural process model using just 8\% of the input data and three orders of magnitude less compute than existing NWP and hybrid AI-NWP methods. We anticipate that Aardvark Weather will be the starting point for a new generation of end-to-end machine learning models for medium-range forecasting that will reduce computational costs by orders of magnitude and enable the rapid and cheap creation of bespoke models for users in a variety of fields, including for the developing world where state-of-the-art local models are not currently available.
- Abstract(参考訳): 天気予報は、交通、農業、産業、一般市民の安全など、様々な人間の活動にとって重要である。
機械学習モデルは複雑な天気予報パイプラインを変換する可能性があるが、現在のアプローチは依然として数値天気予報システム(NWP)に依存しており、予測速度と精度を制限している。
ここでは、機械学習モデルが、運用中のNWPパイプライン全体を置き換えることができることを実証する。
エンドツーエンドのデータ駆動天気予報システムであるAardvark Weatherは、生の観測を取り込み、グローバルなグリッド化された予測とローカルステーションの予測を出力する。
さらに、興味事量よりもパフォーマンスを最大化するためにエンドツーエンドを最適化することができる。
グローバル予測は、複数の変数とリードタイムの運用NWPベースラインを上回っます。
ローカルステーションの予測は10日間のリードタイムに熟練しており、後処理されたグローバルなNWPベースラインや、人間の予測装置からの入力による最先端のエンドツーエンドの予測システムと同等かつ低いエラーを達成している。
これらの予測は、入力データのわずか85%と既存のNWPとハイブリッドAI-NWPの3桁の計算量を使用して、驚くほど単純なニューラルプロセスモデルで生成される。
我々は、Aardvark Weatherが、現在最先端のローカルモデルが利用できない発展途上国を含む様々な分野のユーザに対して、計算コストを桁違いに削減し、安価かつ迅速かつ安価にベスポークモデルを作成することのできる、中規模予測のための、次世代のエンド・ツー・エンド機械学習モデルの出発点になることを期待している。
関連論文リスト
- FuXi Weather: A data-to-forecast machine learning system for global weather [13.052716094161886]
FuXi Weatherは、複数の衛星のデータと類似した機械学習の天気予報システムである。
FuXi 気象は、中央アフリカなどの観測圏において、ECMWF HRES を一貫して上回っている。
論文 参考訳(メタデータ) (2024-08-10T07:42:01Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
我々は,地球規模の気象変動に対するAIに基づくデータ同化モデル,すなわちAdasを提案する。
我々は,アダスが地球観測を同化して高品質な分析を行い,長期にわたって安定して運用できることを実証した。
この手法を現実のシナリオに適用するのは,私たちが初めてです。
論文 参考訳(メタデータ) (2023-12-18T09:05:28Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - A framework for probabilistic weather forecast post-processing across
models and lead times using machine learning [3.1542695050861544]
我々はNWPモデルと意思決定支援の「理想的な」予測とのギャップを埋める方法について述べる。
本研究では,各数値モデルの誤差プロファイルの学習にQuantile Regression Forestsを使用し,これを経験から得られた確率分布を予測に適用する。
第2に、これらの確率予測を量子平均化(quantile averaging)を用いて組み合わせ、第3に、集合量子化の間で補間して完全な予測分布を生成する。
論文 参考訳(メタデータ) (2020-05-06T16:46:02Z) - Improving data-driven global weather prediction using deep convolutional
neural networks on a cubed sphere [7.918783985810551]
深層畳み込みニューラルネットワーク(CNN)を用いたデータ駆動型世界天気予報フレームワークを提案する。
このフレームワークの新しい開発には、オフラインの体積保存的マッピングから立方体球格子へのマッピングが含まれる。
我々のモデルでは、入力された大気状態の少ない変数から複雑な表面温度パターンを予測することができる。
論文 参考訳(メタデータ) (2020-03-15T19:57:34Z) - Machine learning for total cloud cover prediction [0.0]
本稿では,多層パーセプトロン(MLP)ニューラルネットワーク,勾配促進機(GBM)およびランダムフォレスト(RF)法を用いた後処理の性能について検討する。
生のアンサンブルと比較して、全ての校正法は予測スキルを著しく向上させる。
RFモデルは予測性能が最小となる一方、POLRとGBMのアプローチは最良である。
論文 参考訳(メタデータ) (2020-01-16T17:13:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。