論文の概要: DeepMedcast: A Deep Learning Method for Generating Intermediate Weather Forecasts among Multiple NWP Models
- arxiv url: http://arxiv.org/abs/2411.10010v2
- Date: Sun, 22 Jun 2025 01:09:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 14:54:00.115607
- Title: DeepMedcast: A Deep Learning Method for Generating Intermediate Weather Forecasts among Multiple NWP Models
- Title(参考訳): DeepMedcast: 複数のNWPモデル間の中間天気予報を生成するディープラーニング手法
- Authors: Atsushi Kudo,
- Abstract要約: 2つ以上のNWP出力間の中間予測を生成するディープラーニング手法であるDeepMedcastを提案する。
平均値とは異なり、DeepMedcastは気象学的に重要な特徴が算術平均と一致する予測を提供する。
ケーススタディと検証結果を通じてDeepMedcastの能力を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerical weather prediction (NWP) centers around the world operate a variety of NWP models. In addition, recent advances in AI-driven NWP models have further increased the availability of NWP outputs. While this expansion holds the potential to improve forecast accuracy, it raises a critical question: which prediction is the most plausible? If the NWP models have comparable accuracy, it is impossible to determine in advance which one is the best. Traditional approaches, such as ensemble or weighted averaging, combine multiple NWP outputs to produce a single forecast with improved accuracy. However, they often result in meteorologically unrealistic and uninterpretable outputs, such as the splitting of tropical cyclone centers or frontal boundaries into multiple distinct systems. To address this issue, we propose DeepMedcast, a deep learning method that generates intermediate forecasts between two or more NWP outputs. Unlike averaging, DeepMedcast provides predictions in which meteorologically significant features -- such as the locations of tropical cyclones, extratropical cyclones, fronts, and shear lines -- approximately align with the arithmetic mean of the corresponding features predicted by the input NWP models, without distorting meteorological structures. We demonstrate the capability of DeepMedcast through case studies and verification results, showing that it produces realistic and interpretable forecasts with higher accuracy than the input NWP models. By providing plausible intermediate forecasts, DeepMedcast can significantly contribute to the efficiency and standardization of operational forecasting tasks, including general, marine, and aviation forecasts.
- Abstract(参考訳): 世界中の数値気象予報(NWP)センターは、様々なNWPモデルを運用している。
さらに、AI駆動型NWPモデルの最近の進歩は、NWP出力の可用性をさらに高めた。
この拡張は予測精度を改善する可能性を秘めているが、重要な疑問を提起している。
NWPモデルが同等の精度を持つ場合、どのモデルが最も優れているかを事前に決定することは不可能である。
アンサンブルや重み付け平均化といった従来の手法では、複数のNWP出力を組み合わせて、1つの予測を精度良く生成する。
しかし、熱帯のサイクロン中心や正面の境界を複数の異なる系に分割するなど、気象学的に非現実的で解釈不能な出力をもたらすことが多い。
この問題に対処するために,2つ以上のNWP出力間の中間予測を生成するディープラーニング手法であるDeepMedcastを提案する。
平均値とは異なり、DeepMedcastは気象学的に重要な特徴(熱帯性サイクロン、熱帯性サイクロン、前線、せん断線など)が、気象学的構造を歪ませることなく、入力されたNWPモデルによって予測される対応する特徴の算術平均とほぼ一致することを予測している。
ケーススタディと検証結果を通してDeepMedcastの能力を実証し、入力されたNWPモデルよりも高精度で現実的で解釈可能な予測を生成することを示した。
もっともらしい中間予測を提供することにより、DeepMedcastは、一般、海洋、航空の予測を含む運用予測タスクの効率性と標準化に大きく貢献することができる。
関連論文リスト
- Self-Supervised Learning with Probabilistic Density Labeling for Rainfall Probability Estimation [16.086011448639635]
SSLPDLはNWP予測を後処理することで降雨確率を推定するための後処理手法である。
極端気象現象のクラス不均衡に対処するために,確率密度に基づく簡単なラベル付け手法を提案する。
実験の結果,SSLPDLは地域降水後処理において,他の降水予測モデルを上回ることがわかった。
論文 参考訳(メタデータ) (2024-12-08T05:56:09Z) - Leveraging data-driven weather models for improving numerical weather prediction skill through large-scale spectral nudging [1.747339718564314]
本研究は、物理学に基づくGEMとAIベースのGraphCastモデルの相対的な強みと弱みを示す。
物理空間とスペクトル空間におけるそれぞれの大域的予測の解析により、GraphCast予測された大規模なスケールは、より長いリードタイムにおいてGEMを上回っていることが明らかとなった。
GEMにより予測される温度と水平風の成分を大規模にグラフCast予測に向けてスペクトル的に評価するハイブリッドNWP-AIシステムを提案する。
論文 参考訳(メタデータ) (2024-07-08T16:39:25Z) - Aardvark weather: end-to-end data-driven weather forecasting [30.219727555662267]
Aardvark Weatherは、エンドツーエンドのデータ駆動型天気予報システムである。
生の観測を取り込み、グローバルなグリッド化された予測とローカルステーションの予測を出力する。
興味事の量よりもパフォーマンスを最大化するために、エンドツーエンドに最適化することができる。
論文 参考訳(メタデータ) (2024-03-30T16:41:24Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
深層ニューラルネットワークは、気象条件をモデル化するための代替パラダイムを提供する。
MetNet-3は、密度とスパースの両方のデータセンサーから学習し、降水、風、温度、露点を最大24時間前に予測する。
MetNet-3は、それぞれ時間分解能と空間分解能が高く、最大2分と1km、運用遅延は低い。
論文 参考訳(メタデータ) (2023-06-06T07:07:54Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - Benchmark Dataset for Precipitation Forecasting by Post-Processing the
Numerical Weather Prediction [11.52104902059751]
スタンドアロンNWPとDLのギャップを埋めるためのハイブリッドNWP-DLワークフローを提案する。
このワークフローでは、NWP出力を深いモデルに入力し、データを後処理して洗練された降水予測を生成する。
我々は,NWP予測とAWS観測による朝鮮半島の新たなデータセットを提案する。
論文 参考訳(メタデータ) (2022-06-30T12:41:32Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
確率的負荷予測(PLF)は、スマートエネルギーグリッドの効率的な管理に必要な拡張ツールチェーンの重要なコンポーネントです。
ベイジアン混合密度ネットワークを枠とした新しいPLFアプローチを提案する。
後方分布の信頼性と計算にスケーラブルな推定を行うため,平均場変動推定と深層アンサンブルを統合した。
論文 参考訳(メタデータ) (2020-12-23T16:21:34Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z) - A framework for probabilistic weather forecast post-processing across
models and lead times using machine learning [3.1542695050861544]
我々はNWPモデルと意思決定支援の「理想的な」予測とのギャップを埋める方法について述べる。
本研究では,各数値モデルの誤差プロファイルの学習にQuantile Regression Forestsを使用し,これを経験から得られた確率分布を予測に適用する。
第2に、これらの確率予測を量子平均化(quantile averaging)を用いて組み合わせ、第3に、集合量子化の間で補間して完全な予測分布を生成する。
論文 参考訳(メタデータ) (2020-05-06T16:46:02Z) - Machine learning for total cloud cover prediction [0.0]
本稿では,多層パーセプトロン(MLP)ニューラルネットワーク,勾配促進機(GBM)およびランダムフォレスト(RF)法を用いた後処理の性能について検討する。
生のアンサンブルと比較して、全ての校正法は予測スキルを著しく向上させる。
RFモデルは予測性能が最小となる一方、POLRとGBMのアプローチは最良である。
論文 参考訳(メタデータ) (2020-01-16T17:13:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。