論文の概要: Zero-shot Safety Prediction for Autonomous Robots with Foundation World Models
- arxiv url: http://arxiv.org/abs/2404.00462v3
- Date: Thu, 2 May 2024 19:18:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 17:18:04.073873
- Title: Zero-shot Safety Prediction for Autonomous Robots with Foundation World Models
- Title(参考訳): 基礎世界モデルを用いた自律ロボットのゼロショット安全予測
- Authors: Zhenjiang Mao, Siqi Dai, Yuang Geng, Ivan Ruchkin,
- Abstract要約: 世界モデルは、コントローラを訓練し、システムの内部のダイナミックモデルを学ぶことによって安全違反を予測するために代理世界を作成する。
本稿では,観察を意味的かつ因果的に潜伏した表現に組み込む基礎世界モデルを提案する。
これにより、Surrogate dynamicsは、トレーニング不要な大規模言語モデルを活用することで、因果先状態を直接予測できる。
- 参考スコア(独自算出の注目度): 0.12499537119440243
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A world model creates a surrogate world to train a controller and predict safety violations by learning the internal dynamic model of systems. However, the existing world models rely solely on statistical learning of how observations change in response to actions, lacking precise quantification of how accurate the surrogate dynamics are, which poses a significant challenge in safety-critical systems. To address this challenge, we propose foundation world models that embed observations into meaningful and causally latent representations. This enables the surrogate dynamics to directly predict causal future states by leveraging a training-free large language model. In two common benchmarks, this novel model outperforms standard world models in the safety prediction task and has a performance comparable to supervised learning despite not using any data. We evaluate its performance with a more specialized and system-relevant metric by comparing estimated states instead of aggregating observation-wide error.
- Abstract(参考訳): 世界モデルは、コントローラを訓練し、システムの内部のダイナミックモデルを学ぶことによって安全違反を予測するために代理世界を作成する。
しかし、既存の世界モデルは、アクションに反応して観測がどのように変化するかの統計的学習のみに依存しており、サロゲート力学の正確さの正確な定量化が欠如しており、安全クリティカルなシステムにおいて大きな課題となっている。
この課題に対処するために,観測結果を意味的かつ因果的に潜伏した表現に埋め込む基礎世界モデルを提案する。
これにより、Surrogate dynamicsは、トレーニング不要な大規模言語モデルを活用することで、因果先状態を直接予測できる。
2つの一般的なベンチマークでは、この新モデルは安全予測タスクにおいて標準的な世界モデルよりも優れており、データを使用しないにもかかわらず教師付き学習に匹敵する性能を有する。
我々は、観測範囲の誤差を集約するのではなく、推定状態を比較することにより、より専門的でシステム関連度の高い測定値を用いて、その性能を評価する。
関連論文リスト
- WHALE: Towards Generalizable and Scalable World Models for Embodied Decision-making [40.53824201182517]
本稿では、一般化可能な世界モデルを学ぶためのフレームワークであるWHALEを紹介する。
Whale-STは、拡張一般化性を備えた時空間変圧器を用いたスケーラブルな世界モデルである。
また、Open X-Embodimentデータセットから970K軌道上でトレーニングされた414MパラメータワールドモデルであるWhale-Xを提案する。
論文 参考訳(メタデータ) (2024-11-08T15:01:27Z) - ReCoRe: Regularized Contrastive Representation Learning of World Model [21.29132219042405]
対照的な教師なし学習と介入不変正規化器を用いて不変特徴を学習する世界モデルを提案する。
提案手法は,現状のモデルベースおよびモデルフリーのRL法より優れ,iGibsonベンチマークで評価された分布外ナビゲーションタスクを大幅に改善する。
論文 参考訳(メタデータ) (2023-12-14T15:53:07Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - Benchmark for Models Predicting Human Behavior in Gap Acceptance
Scenarios [4.801975818473341]
我々は、どんなモデルでも、どんなメトリクスでも、どんなシナリオでも、容易に評価できるフレームワークを開発します。
次に、このフレームワークを最先端の予測モデルに適用する。
論文 参考訳(メタデータ) (2022-11-10T09:59:38Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - Quantifying Multimodality in World Models [5.593667856320704]
RLに基づく世界モデルにおけるマルチモーダル不確実性の検出と定量化のための新しい指標を提案する。
不確実な将来の状態の正しいモデリングと検出は、安全な方法で重要な状況を扱うための基盤となる。
論文 参考訳(メタデータ) (2021-12-14T09:52:18Z) - Dream to Explore: Adaptive Simulations for Autonomous Systems [3.0664963196464448]
ベイズ的非パラメトリック法を適用し,力学系制御の学習に挑戦する。
ガウス過程を用いて潜在世界力学を探索することにより、強化学習で観測される一般的なデータ効率の問題を緩和する。
本アルゴリズムは,ログの変動的下界を最適化することにより,世界モデルと政策を共同で学習する。
論文 参考訳(メタデータ) (2021-10-27T04:27:28Z) - SafeAMC: Adversarial training for robust modulation recognition models [53.391095789289736]
通信システムには、Deep Neural Networks(DNN)モデルに依存する変調認識など、多くのタスクがある。
これらのモデルは、逆方向の摂動、すなわち、誤分類を引き起こすために作られた知覚不能な付加音に影響を受けやすいことが示されている。
本稿では,自動変調認識モデルのロバスト性を高めるために,逆方向の摂動を伴うモデルを微調整する逆方向トレーニングを提案する。
論文 参考訳(メタデータ) (2021-05-28T11:29:04Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z) - Context-aware Dynamics Model for Generalization in Model-Based
Reinforcement Learning [124.9856253431878]
グローバルなダイナミクスモデルを学習するタスクを,(a)ローカルなダイナミクスをキャプチャするコンテキスト潜在ベクトルを学習し,(b)次に条件付き状態を予測するという2つの段階に分割する。
本研究では,コンテキスト潜在ベクトルに動的情報をエンコードするために,コンテキスト潜在ベクトルを前方と後方の両方のダイナミクスを予測するのに役立つような新しい損失関数を導入する。
提案手法は,既存のRL方式と比較して,様々なシミュレーションロボットや制御タスクの一般化能力に優れる。
論文 参考訳(メタデータ) (2020-05-14T08:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。