論文の概要: AI Act and Large Language Models (LLMs): When critical issues and privacy impact require human and ethical oversight
- arxiv url: http://arxiv.org/abs/2404.00600v2
- Date: Tue, 2 Apr 2024 06:05:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 02:50:30.107299
- Title: AI Act and Large Language Models (LLMs): When critical issues and privacy impact require human and ethical oversight
- Title(参考訳): AI法とLarge Language Models (LLMs): 重大な問題とプライバシーへの影響が人的および倫理的監視を必要とする場合
- Authors: Nicola Fabiano,
- Abstract要約: 人間の監視、倫理的監視、プライバシーへの影響評価に対処する。
この貢献は、人間の監視、倫理的監視、およびプライバシーへの影響評価に対処する。
プライバシー、個人データ保護、倫理レベルで、特に最も弱く最も脆弱な領域において、リスクのレベルとそれらが与える影響を評価する必要があると結論付けている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The imposing evolution of artificial intelligence systems and, specifically, of Large Language Models (LLM) makes it necessary to carry out assessments of their level of risk and the impact they may have in the area of privacy, personal data protection and at an ethical level, especially on the weakest and most vulnerable. This contribution addresses human oversight, ethical oversight, and privacy impact assessment.
- Abstract(参考訳): 人工知能システムの暗示的な進化、特にLarge Language Models(LLM)は、プライバシ、個人データ保護、倫理的なレベルで、特に最も弱く最も脆弱な領域において、それらのリスクレベルとそれらが持つ可能性のある影響の評価を実行する必要がある。
この貢献は、人間の監視、倫理的監視、およびプライバシーへの影響評価に対処する。
関連論文リスト
- How Privacy-Savvy Are Large Language Models? A Case Study on Compliance and Privacy Technical Review [15.15468770348023]
プライバシ情報抽出(PIE)、法および規制キーポイント検出(KPD)、質問応答(QA)などのプライバシー関連タスクにおいて、大規模言語モデルの性能を評価する。
本稿では, BERT, GPT-3.5, GPT-4, カスタムモデルなど, プライバシコンプライアンスチェックや技術プライバシレビューの実行能力について検討する。
LLMは、プライバシーレビューの自動化と規制上の相違点の特定を約束する一方で、法律標準の進化に完全に準拠する能力において、大きなギャップが持続している。
論文 参考訳(メタデータ) (2024-09-04T01:51:37Z) - Trust No Bot: Discovering Personal Disclosures in Human-LLM Conversations in the Wild [40.57348900292574]
人間とチャットボットのインタラクションにおける個人の開示を測定することで、ユーザのAIリテラシーをよりよく理解することができる。
我々は、実際のユーザが商用のGPTモデルに対して行った個人情報を詳細に分析する。
論文 参考訳(メタデータ) (2024-07-16T07:05:31Z) - Privacy Risks of General-Purpose AI Systems: A Foundation for Investigating Practitioner Perspectives [47.17703009473386]
強力なAIモデルによって、幅広いタスクでパフォーマンスが飛躍的に向上した。
プライバシの懸念は、さまざまなプライバシのリスクとAIモデルの脆弱性をカバーした、豊富な文献につながっている。
我々はこれらの調査論文の体系的なレビューを行い、GPAISにおけるプライバシーリスクの簡潔かつ有用な概観を提供する。
論文 参考訳(メタデータ) (2024-07-02T07:49:48Z) - Exploring the Privacy Protection Capabilities of Chinese Large Language Models [19.12726985060863]
言語システムにおけるプライバシ評価のための3段階のプログレッシブフレームワークを考案した。
我々の主な目的は、大規模言語モデルの個人情報に対する感度を包括的に評価することである。
既存の中国の大規模言語モデルは、プライバシー保護の欠点を普遍的に示している。
論文 参考訳(メタデータ) (2024-03-27T02:31:54Z) - The Ethics of Interaction: Mitigating Security Threats in LLMs [1.407080246204282]
この論文は、社会や個人のプライバシに対するこのようなセキュリティ上の脅威に対する、倫理的な悪影響について論じている。
われわれは、プロンプト注入、ジェイルブレイク、個人識別情報(PII)露出、性的に明示的なコンテンツ、ヘイトベースのコンテンツという5つの主要な脅威を精査し、彼らの批判的な倫理的結果と、彼らが堅牢な戦略戦略のために作り出した緊急性を評価する。
論文 参考訳(メタデータ) (2024-01-22T17:11:37Z) - Ethics and Responsible AI Deployment [1.3597551064547502]
この記事では、倫理基準に準拠しながら個人のプライバシーを保護する倫理的AIシステムの必要性について論じる。
研究は、差分プライバシー、同型暗号化、連合学習、国際規制フレームワーク、倫理ガイドラインなどの革新的なアルゴリズム技術について検討している。
論文 参考訳(メタデータ) (2023-11-12T13:32:46Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - Adaptive cognitive fit: Artificial intelligence augmented management of
information facets and representations [62.997667081978825]
ビッグデータ技術と人工知能(AI)応用の爆発的な成長は、情報ファセットの普及に繋がった。
等角性や正確性などの情報フェートは、情報に対する人間の認識を支配的かつ著しく左右する。
認知の限界を克服するために情報表現を適応できる人工知能技術が必要であることを示唆する。
論文 参考訳(メタデータ) (2022-04-25T02:47:25Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
本稿では,PCAL(Adversarial Learning)に基づくプライバシ保護型信用リスクモデリングの枠組みを提案する。
PCALは、ターゲット予測タスクのパフォーマンスの重要なユーティリティ情報を維持しながら、元のデータセット内のプライベート情報を隠蔽することを目的としている。
結果は,PCALがユーザデータから効果的なプライバシフリー表現を学習し,信用リスク分析のためのプライバシ保存機械学習の基盤となることを示唆している。
論文 参考訳(メタデータ) (2020-10-06T07:04:59Z) - Differentially Private and Fair Deep Learning: A Lagrangian Dual
Approach [54.32266555843765]
本稿では,個人の機密情報のプライバシを保護するとともに,非差別的予測器の学習を可能にするモデルについて検討する。
この方法は、微分プライバシーの概念と、公正性制約を満たすニューラルネットワークの設計にラグランジアン双対性(Lagrangian duality)を用いることに依存している。
論文 参考訳(メタデータ) (2020-09-26T10:50:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。