OmniLocalRF: Omnidirectional Local Radiance Fields from Dynamic Videos
- URL: http://arxiv.org/abs/2404.00676v1
- Date: Sun, 31 Mar 2024 12:55:05 GMT
- Title: OmniLocalRF: Omnidirectional Local Radiance Fields from Dynamic Videos
- Authors: Dongyoung Choi, Hyeonjoong Jang, Min H. Kim,
- Abstract summary: We introduce a new approach called Omnidirectional Local Radiance Fields (OmniLocalRF) that can render static-only scene views.
Our approach combines the principles of local radiance fields with the bidirectional optimization of omnidirectional rays.
Our experiments validate that OmniLocalRF outperforms existing methods in both qualitative and quantitative metrics.
- Score: 14.965321452764355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Omnidirectional cameras are extensively used in various applications to provide a wide field of vision. However, they face a challenge in synthesizing novel views due to the inevitable presence of dynamic objects, including the photographer, in their wide field of view. In this paper, we introduce a new approach called Omnidirectional Local Radiance Fields (OmniLocalRF) that can render static-only scene views, removing and inpainting dynamic objects simultaneously. Our approach combines the principles of local radiance fields with the bidirectional optimization of omnidirectional rays. Our input is an omnidirectional video, and we evaluate the mutual observations of the entire angle between the previous and current frames. To reduce ghosting artifacts of dynamic objects and inpaint occlusions, we devise a multi-resolution motion mask prediction module. Unlike existing methods that primarily separate dynamic components through the temporal domain, our method uses multi-resolution neural feature planes for precise segmentation, which is more suitable for long 360-degree videos. Our experiments validate that OmniLocalRF outperforms existing methods in both qualitative and quantitative metrics, especially in scenarios with complex real-world scenes. In particular, our approach eliminates the need for manual interaction, such as drawing motion masks by hand and additional pose estimation, making it a highly effective and efficient solution.
Related papers
- Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-aware Spatio-Temporal Sampling [70.34875558830241]
We present a way for learning a-temporal (4D) embedding, based on semantic semantic gears to allow for stratified modeling of dynamic regions of rendering the scene.
At the same time, almost for free, our tracking approach enables free-viewpoint of interest - a functionality not yet achieved by existing NeRF-based methods.
arXiv Detail & Related papers (2024-06-06T03:37:39Z) - DyBluRF: Dynamic Neural Radiance Fields from Blurry Monocular Video [18.424138608823267]
We propose DyBluRF, a dynamic radiance field approach that synthesizes sharp novel views from a monocular video affected by motion blur.
To account for motion blur in input images, we simultaneously capture the camera trajectory and object Discrete Cosine Transform (DCT) trajectories within the scene.
arXiv Detail & Related papers (2024-03-15T08:48:37Z) - CTNeRF: Cross-Time Transformer for Dynamic Neural Radiance Field from Monocular Video [25.551944406980297]
We propose a novel approach to generate high-quality novel views from monocular videos of complex and dynamic scenes.
We introduce a module that operates in both the time and frequency domains to aggregate the features of object motion.
Our experiments demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets.
arXiv Detail & Related papers (2024-01-10T00:40:05Z) - Point-DynRF: Point-based Dynamic Radiance Fields from a Monocular Video [19.0733297053322]
We introduce point-based dynamic radiance fields, where the global geometric information and volume rendering process are trained by neural point clouds and dynamic radiance fields, respectively.
Specifically, we reconstruct neural point clouds directly from geometric proxies and optimize both radiance fields and the geometric proxies using our proposed losses.
We validate the effectiveness of our method with experiments on the NVIDIA Dynamic Scenes dataset and several causally captured monocular video clips.
arXiv Detail & Related papers (2023-10-14T19:27:46Z) - Learning to Fuse Monocular and Multi-view Cues for Multi-frame Depth
Estimation in Dynamic Scenes [51.20150148066458]
We propose a novel method to learn to fuse the multi-view and monocular cues encoded as volumes without needing the generalizationally crafted masks.
Experiments on real-world datasets prove the significant effectiveness and ability of the proposed method.
arXiv Detail & Related papers (2023-04-18T13:55:24Z) - DynIBaR: Neural Dynamic Image-Based Rendering [79.44655794967741]
We address the problem of synthesizing novel views from a monocular video depicting a complex dynamic scene.
We adopt a volumetric image-based rendering framework that synthesizes new viewpoints by aggregating features from nearby views.
We demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets.
arXiv Detail & Related papers (2022-11-20T20:57:02Z) - DeepMultiCap: Performance Capture of Multiple Characters Using Sparse
Multiview Cameras [63.186486240525554]
DeepMultiCap is a novel method for multi-person performance capture using sparse multi-view cameras.
Our method can capture time varying surface details without the need of using pre-scanned template models.
arXiv Detail & Related papers (2021-05-01T14:32:13Z) - Editable Free-viewpoint Video Using a Layered Neural Representation [35.44420164057911]
We propose the first approach for editable free-viewpoint video generation for large-scale dynamic scenes using only sparse 16 cameras.
The core of our approach is a new layered neural representation, where each dynamic entity including the environment itself is formulated into a space-time coherent neural layered radiance representation called ST-NeRF.
Experiments demonstrate the effectiveness of our approach to achieve high-quality, photo-realistic, and editable free-viewpoint video generation for dynamic scenes.
arXiv Detail & Related papers (2021-04-30T06:50:45Z) - Event-based Motion Segmentation with Spatio-Temporal Graph Cuts [51.17064599766138]
We have developed a method to identify independently objects acquired with an event-based camera.
The method performs on par or better than the state of the art without having to predetermine the number of expected moving objects.
arXiv Detail & Related papers (2020-12-16T04:06:02Z) - D-NeRF: Neural Radiance Fields for Dynamic Scenes [72.75686949608624]
We introduce D-NeRF, a method that extends neural radiance fields to a dynamic domain.
D-NeRF reconstructs images of objects under rigid and non-rigid motions from a camera moving around the scene.
We demonstrate the effectiveness of our approach on scenes with objects under rigid, articulated and non-rigid motions.
arXiv Detail & Related papers (2020-11-27T19:06:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.