論文の概要: Privacy Re-identification Attacks on Tabular GANs
- arxiv url: http://arxiv.org/abs/2404.00696v1
- Date: Sun, 31 Mar 2024 14:14:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 02:11:04.529651
- Title: Privacy Re-identification Attacks on Tabular GANs
- Title(参考訳): タブラルガンのプライバシ再識別攻撃
- Authors: Abdallah Alshantti, Adil Rasheed, Frank Westad,
- Abstract要約: 生成モデルは過度に適合し、トレーニングデータから機密情報を漏洩させる可能性がある。
合成データセット作成にGAN(Generative Adversarial Network)を用いることによって生じる可能性のあるプライバシーリスクについて検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generative models are subject to overfitting and thus may potentially leak sensitive information from the training data. In this work. we investigate the privacy risks that can potentially arise from the use of generative adversarial networks (GANs) for creating tabular synthetic datasets. For the purpose, we analyse the effects of re-identification attacks on synthetic data, i.e., attacks which aim at selecting samples that are predicted to correspond to memorised training samples based on their proximity to the nearest synthetic records. We thus consider multiple settings where different attackers might have different access levels or knowledge of the generative model and predictive, and assess which information is potentially most useful for launching more successful re-identification attacks. In doing so we also consider the situation for which re-identification attacks are formulated as reconstruction attacks, i.e., the situation where an attacker uses evolutionary multi-objective optimisation for perturbing synthetic samples closer to the training space. The results indicate that attackers can indeed pose major privacy risks by selecting synthetic samples that are likely representative of memorised training samples. In addition, we notice that privacy threats considerably increase when the attacker either has knowledge or has black-box access to the generative models. We also find that reconstruction attacks through multi-objective optimisation even increase the risk of identifying confidential samples.
- Abstract(参考訳): 生成モデルは過度に適合し、トレーニングデータから機密情報を漏洩させる可能性がある。
この作品。
本稿では,表層合成データセットの作成にGAN(Generative Adversarial Network)を用いることによって生じる可能性のあるプライバシーリスクについて検討する。
本研究の目的は,合成データに対する再識別攻撃の効果,すなわち,最も近い合成レコードに近接して記憶されたトレーニングサンプルに対応すると予測されるサンプルを選択することを目的とした攻撃について分析することである。
そこで我々は、異なる攻撃者が、生成モデルと予測モデルに関する異なるアクセスレベルや知識を持つかもしれない複数の設定を検討し、どの情報がより成功した再識別攻撃を起動するのに最も有用かを評価する。
また,再同定攻撃が再構成攻撃として定式化される状況,すなわち,攻撃者が学習空間に近い合成サンプルの摂動に進化的多目的最適化を使用する状況についても考察する。
その結果, 記憶されたトレーニングサンプルを代表する合成サンプルを選択することで, 攻撃者が大きなプライバシーリスクを負う可能性が示唆された。
さらに、攻撃者が知識を持つか、生成モデルにブラックボックスアクセスを持つ場合、プライバシの脅威が著しく増加することに気付く。
また,多目的最適化による再建攻撃により,機密サンプルの特定リスクが高まることも見いだされた。
関連論文リスト
- Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Model Stealing Attack against Recommender System [85.1927483219819]
いくつかの敵攻撃は、レコメンデーターシステムに対するモデル盗難攻撃を成し遂げた。
本稿では、利用可能なターゲットデータとクエリの量を制限し、対象データとセットされたアイテムを共有する補助データを活用して、モデル盗難攻撃を促進する。
論文 参考訳(メタデータ) (2023-12-18T05:28:02Z) - Transpose Attack: Stealing Datasets with Bidirectional Training [4.166238443183223]
敵は正統なモデルの下で保護された学習環境からデータセットを抽出できることを示す。
本稿では,感染モデルを検出するための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-11-13T15:14:50Z) - When Machine Learning Models Leak: An Exploration of Synthetic Training Data [0.0]
今後2年間で人や家庭が移転するかどうかを予測する機械学習モデルに対する攻撃について検討する。
この攻撃は、攻撃者がモデルをクエリして予測を得ることができ、モデルがトレーニングされたデータの限界分布が公開されていると仮定する。
モデルのトレーニングにおいて、元のデータを合成データに置き換えることが、攻撃者がどのように機密属性を推測できるかにどのように影響するかを検討する。
論文 参考訳(メタデータ) (2023-10-12T23:47:22Z) - Adversarial Attacks Neutralization via Data Set Randomization [3.655021726150369]
ディープラーニングモデルに対する敵対的な攻撃は、信頼性とセキュリティに深刻な脅威をもたらす。
本稿では,超空間射影に根ざした新しい防御機構を提案する。
提案手法は,敵対的攻撃に対するディープラーニングモデルの堅牢性を高めていることを示す。
論文 参考訳(メタデータ) (2023-06-21T10:17:55Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
そこで我々は,モデルレベルの情報を通して,防衛を探索するための新しい情報尺度,すなわち,記憶の離散性(Memorization Discrepancy)を提案する。
暗黙的にデータ操作の変更をモデル出力に転送することで、メモリ識別は許容できない毒のサンプルを発見することができる。
我々は、その性質を徹底的に探求し、累積中毒に対する防御のために、離散型サンプル補正(DSC)を提案する。
論文 参考訳(メタデータ) (2023-06-06T14:45:24Z) - Identifying Adversarially Attackable and Robust Samples [1.4213973379473654]
アドリアックは、入力サンプルに小さな、知覚不能な摂動を挿入し、ディープラーニングモデルの出力に大きな、望ましくない変化を引き起こす。
本研究は, 対人攻撃に最も影響を受けやすいサンプルを同定することを目的とした, サンプル攻撃可能性の概念を紹介する。
本研究では,未知のターゲットモデルに対する未知のデータセットにおいて,逆攻撃可能で頑健なサンプルを識別するディープラーニングベースの検出器を提案する。
論文 参考訳(メタデータ) (2023-01-30T13:58:14Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - Curse or Redemption? How Data Heterogeneity Affects the Robustness of
Federated Learning [51.15273664903583]
データの不均一性は、フェデレートラーニングにおける重要な特徴の1つとして認識されているが、しばしば敵対的攻撃に対する堅牢性のレンズで見過ごされる。
本稿では, 複合学習におけるバックドア攻撃の影響を, 総合的な実験を通じて評価し, 理解することを目的とした。
論文 参考訳(メタデータ) (2021-02-01T06:06:21Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
本手法は,他の標準メンバーシップ相手と異なり,被害者モデルのスコアにアクセスできないような厳格な制限の下で動作可能な,新しいメンバーシップ推論手法であるサンプリングアタックを導入する。
ラベルのみを公開している被害者モデルでは,攻撃のサンプリングが引き続き可能であり,攻撃者はその性能の最大100%を回復できることを示す。
防衛においては,被害者モデルのトレーニング中の勾配摂動と予測時の出力摂動の形式で差分プライバシーを選択する。
論文 参考訳(メタデータ) (2020-09-01T12:54:54Z) - Systematic Evaluation of Privacy Risks of Machine Learning Models [41.017707772150835]
メンバーシップ推論攻撃に対する事前の取り組みは、プライバシーリスクを著しく過小評価する可能性があることを示す。
まず、既存の非ニューラルネットワークベースの推論攻撃を改善することで、メンバーシップ推論のプライバシリスクをベンチマークする。
次に、プライバシリスクスコアと呼ばれる新しい指標を定式化し、導出することで、詳細なプライバシ分析のための新しいアプローチを導入する。
論文 参考訳(メタデータ) (2020-03-24T00:53:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。