3MOS: Multi-sources, Multi-resolutions, and Multi-scenes dataset for Optical-SAR image matching
- URL: http://arxiv.org/abs/2404.00838v1
- Date: Mon, 1 Apr 2024 00:31:11 GMT
- Title: 3MOS: Multi-sources, Multi-resolutions, and Multi-scenes dataset for Optical-SAR image matching
- Authors: Yibin Ye, Xichao Teng, Shuo Chen, Yijie Bian, Tao Tan, Zhang Li,
- Abstract summary: We introduce a large-scale Multi-sources,Multi-resolutions, and Multi-scenes dataset for Optical-SAR image matching (3MOS)
It consists of 155K optical-SAR image pairs, including SAR data from six commercial satellites, with resolutions ranging from 1.25m to 12.5m.
The data has been classified into eight scenes including urban, rural, plains, hills, mountains, water, desert, and frozen earth.
- Score: 6.13702551312774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optical-SAR image matching is a fundamental task for image fusion and visual navigation. However, all large-scale open SAR dataset for methods development are collected from single platform, resulting in limited satellite types and spatial resolutions. Since images captured by different sensors vary significantly in both geometric and radiometric appearance, existing methods may fail to match corresponding regions containing the same content. Besides, most of existing datasets have not been categorized based on the characteristics of different scenes. To encourage the design of more general multi-modal image matching methods, we introduce a large-scale Multi-sources,Multi-resolutions, and Multi-scenes dataset for Optical-SAR image matching(3MOS). It consists of 155K optical-SAR image pairs, including SAR data from six commercial satellites, with resolutions ranging from 1.25m to 12.5m. The data has been classified into eight scenes including urban, rural, plains, hills, mountains, water, desert, and frozen earth. Extensively experiments show that none of state-of-the-art methods achieve consistently superior performance across different sources, resolutions and scenes. In addition, the distribution of data has a substantial impact on the matching capability of deep learning models, this proposes the domain adaptation challenge in optical-SAR image matching. Our data and code will be available at:https://github.com/3M-OS/3MOS.
Related papers
- Deep Multimodal Fusion for Semantic Segmentation of Remote Sensing Earth Observation Data [0.08192907805418582]
This paper proposes a late fusion deep learning model (LF-DLM) for semantic segmentation.
One branch integrates detailed textures from aerial imagery captured by UNetFormer with a Multi-Axis Vision Transformer (ViT) backbone.
The other branch captures complex-temporal dynamics from the Sentinel-2 satellite imageMax time series using a U-ViNet with Temporal Attention (U-TAE)
arXiv Detail & Related papers (2024-10-01T07:50:37Z) - MLMT-CNN for Object Detection and Segmentation in Multi-layer and Multi-spectral Images [4.2623421577291225]
We present a multi-task deep learning framework that exploits the dependencies between image bands to produce 3D AR localisation.
Our framework achieves an average of 0.72 IoU (segmentation) and 0.90 F1 score (detection) across all modalities.
arXiv Detail & Related papers (2024-07-19T17:21:53Z) - An evaluation of Deep Learning based stereo dense matching dataset shift
from aerial images and a large scale stereo dataset [2.048226951354646]
We present a method for generating ground-truth disparity maps directly from Light Detection and Ranging (LiDAR) and images.
We evaluate 11 dense matching methods across datasets with diverse scene types, image resolutions, and geometric configurations.
arXiv Detail & Related papers (2024-02-19T20:33:46Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - DiffusionSat: A Generative Foundation Model for Satellite Imagery [63.2807119794691]
We present DiffusionSat, to date the largest generative foundation model trained on a collection of publicly available large, high-resolution remote sensing datasets.
Our method produces realistic samples and can be used to solve multiple generative tasks including temporal generation, superresolution given multi-spectral inputs and in-painting.
arXiv Detail & Related papers (2023-12-06T16:53:17Z) - Multi-Content Complementation Network for Salient Object Detection in
Optical Remote Sensing Images [108.79667788962425]
salient object detection in optical remote sensing images (RSI-SOD) remains to be a challenging emerging topic.
We propose a novel Multi-Content Complementation Network (MCCNet) to explore the complementarity of multiple content for RSI-SOD.
In MCCM, we consider multiple types of features that are critical to RSI-SOD, including foreground features, edge features, background features, and global image-level features.
arXiv Detail & Related papers (2021-12-02T04:46:40Z) - Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust
Road Extraction [110.61383502442598]
We introduce a novel neural network framework termed Cross-Modal Message Propagation Network (CMMPNet)
CMMPNet is composed of two deep Auto-Encoders for modality-specific representation learning and a tailor-designed Dual Enhancement Module for cross-modal representation refinement.
Experiments on three real-world benchmarks demonstrate the effectiveness of our CMMPNet for robust road extraction.
arXiv Detail & Related papers (2021-11-30T04:30:10Z) - Sci-Net: a Scale Invariant Model for Building Detection from Aerial
Images [0.0]
We propose a Scale-invariant neural network (Sci-Net) that is able to segment buildings present in aerial images at different spatial resolutions.
Specifically, we modified the U-Net architecture and fused it with dense Atrous Spatial Pyramid Pooling (ASPP) to extract fine-grained multi-scale representations.
arXiv Detail & Related papers (2021-11-12T16:45:20Z) - The QXS-SAROPT Dataset for Deep Learning in SAR-Optical Data Fusion [14.45289690639374]
We publish the QXS-SAROPT dataset to foster deep learning research in SAR-optical data fusion.
We show exemplary results for two representative applications, namely SAR-optical image matching and SAR ship detection boosted by cross-modal information from optical images.
arXiv Detail & Related papers (2021-03-15T10:22:46Z) - X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for
Classification of Remote Sensing Data [69.37597254841052]
We propose a novel cross-modal deep-learning framework called X-ModalNet.
X-ModalNet generalizes well, owing to propagating labels on an updatable graph constructed by high-level features on the top of the network.
We evaluate X-ModalNet on two multi-modal remote sensing datasets (HSI-MSI and HSI-SAR) and achieve a significant improvement in comparison with several state-of-the-art methods.
arXiv Detail & Related papers (2020-06-24T15:29:41Z) - Real-MFF: A Large Realistic Multi-focus Image Dataset with Ground Truth [58.226535803985804]
We introduce a large and realistic multi-focus dataset called Real-MFF.
The dataset contains 710 pairs of source images with corresponding ground truth images.
We evaluate 10 typical multi-focus algorithms on this dataset for the purpose of illustration.
arXiv Detail & Related papers (2020-03-28T12:33:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.