A Cycle Ride to HDR: Semantics Aware Self-Supervised Framework for Unpaired LDR-to-HDR Image Translation
- URL: http://arxiv.org/abs/2410.15068v1
- Date: Sat, 19 Oct 2024 11:11:58 GMT
- Title: A Cycle Ride to HDR: Semantics Aware Self-Supervised Framework for Unpaired LDR-to-HDR Image Translation
- Authors: Hrishav Bakul Barua, Stefanov Kalin, Lemuel Lai En Che, Dhall Abhinav, Wong KokSheik, Krishnasamy Ganesh,
- Abstract summary: Low Dynamic Range (LDR) to High Dynamic Range () image translation is an important computer vision problem.
Most current state-of-the-art methods require high-quality paired LDR, datasets for model training.
We propose a modified cycle-consistent adversarial architecture and utilize unpaired LDR, datasets for training.
- Score: 0.0
- License:
- Abstract: Low Dynamic Range (LDR) to High Dynamic Range (HDR) image translation is an important computer vision problem. There is a significant amount of research utilizing both conventional non-learning methods and modern data-driven approaches, focusing on using both single-exposed and multi-exposed LDR for HDR image reconstruction. However, most current state-of-the-art methods require high-quality paired {LDR,HDR} datasets for model training. In addition, there is limited literature on using unpaired datasets for this task where the model learns a mapping between domains, i.e., LDR to HDR. To address limitations of current methods, such as the paired data constraint , as well as unwanted blurring and visual artifacts in the reconstructed HDR, we propose a method that uses a modified cycle-consistent adversarial architecture and utilizes unpaired {LDR,HDR} datasets for training. The method introduces novel generators to address visual artifact removal and an encoder and loss to address semantic consistency, another under-explored topic. The method achieves state-of-the-art results across several benchmark datasets and reconstructs high-quality HDR images.
Related papers
- Generating Content for HDR Deghosting from Frequency View [56.103761824603644]
Recent Diffusion Models (DMs) have been introduced in HDR imaging field.
DMs require extensive iterations with large models to estimate entire images.
We propose the Low-Frequency aware Diffusion (LF-Diff) model for ghost-free HDR imaging.
arXiv Detail & Related papers (2024-04-01T01:32:11Z) - HistoHDR-Net: Histogram Equalization for Single LDR to HDR Image
Translation [12.45632443397018]
High Dynamic Range ( HDR) imaging aims to replicate the high visual quality and clarity of real-world scenes.
The literature offers various data-driven methods for HDR image reconstruction from Low Dynamic Range (LDR) counterparts.
A common limitation of these approaches is missing details in regions of the reconstructed HDR images.
We propose a simple and effective method, Histo-Net, to recover the fine details.
arXiv Detail & Related papers (2024-02-08T20:14:46Z) - Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
High Dynamic Range (LDR) images can be recovered from several Low Dynamic Range (LDR) images by existing Deep Neural Networks (DNNs) techniques.
DNNs still generate ghosting artifacts when LDR images have saturation and large motion.
We formulate the HDR deghosting problem as an image generation that leverages LDR features as the diffusion model's condition.
arXiv Detail & Related papers (2023-11-02T01:53:55Z) - Self-Supervised High Dynamic Range Imaging with Multi-Exposure Images in
Dynamic Scenes [58.66427721308464]
Self is a self-supervised reconstruction method that only requires dynamic multi-exposure images during training.
Self achieves superior results against the state-of-the-art self-supervised methods, and comparable performance to supervised ones.
arXiv Detail & Related papers (2023-10-03T07:10:49Z) - Learning Continuous Exposure Value Representations for Single-Image HDR
Reconstruction [23.930923461672894]
LDR stack-based methods are used for single-image HDR reconstruction, generating an HDR image from a deep learning-generated LDR stack.
Current methods generate the stack with predetermined exposure values (EVs), which may limit the quality of HDR reconstruction.
We propose the continuous exposure value representation (CEVR), which uses an implicit function to generate LDR images with arbitrary EVs.
arXiv Detail & Related papers (2023-09-07T17:59:03Z) - SMAE: Few-shot Learning for HDR Deghosting with Saturation-Aware Masked
Autoencoders [97.64072440883392]
We propose a novel semi-supervised approach to realize few-shot HDR imaging via two stages of training, called SSHDR.
Unlikely previous methods, directly recovering content and removing ghosts simultaneously, which is hard to achieve optimum.
Experiments demonstrate that SSHDR outperforms state-of-the-art methods quantitatively and qualitatively within and across different datasets.
arXiv Detail & Related papers (2023-04-14T03:42:51Z) - GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild [74.52723408793648]
We present the first method for learning a generative model of HDR images from in-the-wild LDR image collections in a fully unsupervised manner.
The key idea is to train a generative adversarial network (GAN) to generate HDR images which, when projected to LDR under various exposures, are indistinguishable from real LDR images.
Experiments show that our method GlowGAN can synthesize photorealistic HDR images in many challenging cases such as landscapes, lightning, or windows.
arXiv Detail & Related papers (2022-11-22T15:42:08Z) - A Two-stage Deep Network for High Dynamic Range Image Reconstruction [0.883717274344425]
This study tackles the challenges of single-shot LDR to HDR mapping by proposing a novel two-stage deep network.
Notably, our proposed method aims to reconstruct an HDR image without knowing hardware information, including camera response function (CRF) and exposure settings.
arXiv Detail & Related papers (2021-04-19T15:19:17Z) - MetaHDR: Model-Agnostic Meta-Learning for HDR Image Reconstruction [0.0]
Existing approaches for converting low dynamic range images to high dynamic range images are limited by the assumption that all conversions are governed by the same nonlinear mapping.
We propose "Meta-Learning for HDR-Agnostic Image Reconstruction" (Meta), which applies meta-learning to the LDR-to-Model conversion problem using existing HDR datasets.
arXiv Detail & Related papers (2021-03-20T07:56:45Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
We propose a novel GAN-based model, HDR-GAN, for synthesizing HDR images from multi-exposed LDR images.
By incorporating adversarial learning, our method is able to produce faithful information in the regions with missing content.
arXiv Detail & Related papers (2020-07-03T11:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.