A cyber-physical digital twin approach to replicating realistic multi-stage cyberattacks on smart grids
- URL: http://arxiv.org/abs/2412.04900v1
- Date: Fri, 06 Dec 2024 09:58:51 GMT
- Title: A cyber-physical digital twin approach to replicating realistic multi-stage cyberattacks on smart grids
- Authors: Omer Sen, Nathalie Bleser, Martin Henze, Andreas Ulbig,
- Abstract summary: This paper examines the impact of cyberattacks on smart grids by replicating the power grid in a secure laboratory environment.
A simulation is used to study communication infrastructures for secure operation of smart grids.
- Score: 2.479074862022315
- License:
- Abstract: The integration of information and communication technology in distribution grids presents opportunities for active grid operation management, but also increases the need for security against power outages and cyberattacks. This paper examines the impact of cyberattacks on smart grids by replicating the power grid in a secure laboratory environment as a cyber-physical digital twin. A simulation is used to study communication infrastructures for secure operation of smart grids. The cyber-physical digital twin approach combines communication network emulation and power grid simulation in a common modular environment, and is demonstrated through laboratory tests and attack replications.
Related papers
- Towards Robust Stability Prediction in Smart Grids: GAN-based Approach under Data Constraints and Adversarial Challenges [53.2306792009435]
We introduce a novel framework to detect instability in smart grids by employing only stable data.
It relies on a Generative Adversarial Network (GAN) where the generator is trained to create instability data that are used along with stable data to train the discriminator.
Our solution, tested on a dataset composed of real-world stable and unstable samples, achieve accuracy up to 97.5% in predicting grid stability and up to 98.9% in detecting adversarial attacks.
arXiv Detail & Related papers (2025-01-27T20:48:25Z) - Simulation of Multi-Stage Attack and Defense Mechanisms in Smart Grids [2.0766068042442174]
We introduce a simulation environment that replicates the power grid's infrastructure and communication dynamics.
The framework generates diverse, realistic attack data to train machine learning algorithms for detecting and mitigating cyber threats.
It also provides a controlled, flexible platform to evaluate emerging security technologies, including advanced decision support systems.
arXiv Detail & Related papers (2024-12-09T07:07:17Z) - Digital Twin for Evaluating Detective Countermeasures in Smart Grid Cybersecurity [0.0]
This study delves into the potential of digital twins, replicating a smart grid's cyber-physical laboratory environment.
We introduce a flexible, comprehensive digital twin model equipped for hardware-in-the-loop evaluations.
arXiv Detail & Related papers (2024-12-05T08:41:08Z) - Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - Integrating Generative AI with Network Digital Twins for Enhanced Network Operations [0.0]
This paper explores the synergy between network digital twins and generative AI.
We show how generative AI can enhance the accuracy and operational efficiency of network digital twins.
arXiv Detail & Related papers (2024-06-24T19:54:58Z) - CARACAS: vehiCular ArchitectuRe for detAiled Can Attacks Simulation [37.89720165358964]
This paper showcases CARACAS, a vehicular model, including component control via CAN messages and attack injection capabilities.
CarACAS showcases the efficacy of this methodology, including a Battery Electric Vehicle (BEV) model, and focuses on attacks targeting torque control in two distinct scenarios.
arXiv Detail & Related papers (2024-06-11T10:16:55Z) - Adaptive Robotic Arm Control with a Spiking Recurrent Neural Network on a Digital Accelerator [41.60361484397962]
We present an overview of the system, and a Python framework to use it on a Pynq ZU platform.
We show how the simulated accuracy is preserved with a peak performance of 3.8M events processed per second.
arXiv Detail & Related papers (2024-05-21T14:59:39Z) - GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
We propose GAN-GRID a novel adversarial attack targeting the stability prediction system of a smart grid tailored to real-world constraints.
Our findings reveal that an adversary armed solely with the stability model's output, devoid of data or model knowledge, can craft data classified as stable with an Attack Success Rate (ASR) of 0.99.
arXiv Detail & Related papers (2024-05-20T14:43:46Z) - Towards Automated Generation of Smart Grid Cyber Range for Cybersecurity Experiments and Training [8.492135678037787]
We have developed a framework for modelling a smart grid cyber range using an XML-based language, called SG-ML.
The framework aims at making a smart grid cyber range available to broader user bases to facilitate cybersecurity R&D and hands-on exercises.
arXiv Detail & Related papers (2024-04-01T02:34:53Z) - Wireless Network Digital Twin for 6G: Generative AI as A Key Enabler [36.65556658250277]
We propose a hierarchical generative AI-enabled wireless network digital twin at both the message-level and policy-level.
Open research issues for wireless network digital twins in the 6G era are discussed.
arXiv Detail & Related papers (2023-11-29T08:48:26Z) - Web-Based Platform for Evaluation of Resilient and Transactive
Smart-Grids [0.0]
Transactive Energy (TE) is an emerging approach for managing increasing DERs in the smart-grids through economic and control techniques.
We present a comprehensive web-based platform for evaluating resilience of smart-grids against a variety of cyber- and physical-attacks.
arXiv Detail & Related papers (2022-06-11T15:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.