Equivariant Local Reference Frames for Unsupervised Non-rigid Point Cloud Shape Correspondence
- URL: http://arxiv.org/abs/2404.00959v1
- Date: Mon, 1 Apr 2024 06:59:56 GMT
- Title: Equivariant Local Reference Frames for Unsupervised Non-rigid Point Cloud Shape Correspondence
- Authors: Ling Wang, Runfa Chen, Yikai Wang, Fuchun Sun, Xinzhou Wang, Sun Kai, Guangyuan Fu, Jianwei Zhang, Wenbing Huang,
- Abstract summary: We introduce EquiShape, a novel structure tailored to learn pair-wise LRFs with global structural cues for both spatial and semantic consistency.
We also present LRF-Refine, an optimization strategy generally applicable to LRF-based methods.
Our overall framework surpasses the state-of-the-art methods by a large margin on three benchmarks.
- Score: 29.58888279920068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised non-rigid point cloud shape correspondence underpins a multitude of 3D vision tasks, yet itself is non-trivial given the exponential complexity stemming from inter-point degree-of-freedom, i.e., pose transformations. Based on the assumption of local rigidity, one solution for reducing complexity is to decompose the overall shape into independent local regions using Local Reference Frames (LRFs) that are invariant to SE(3) transformations. However, the focus solely on local structure neglects global geometric contexts, resulting in less distinctive LRFs that lack crucial semantic information necessary for effective matching. Furthermore, such complexity introduces out-of-distribution geometric contexts during inference, thus complicating generalization. To this end, we introduce 1) EquiShape, a novel structure tailored to learn pair-wise LRFs with global structural cues for both spatial and semantic consistency, and 2) LRF-Refine, an optimization strategy generally applicable to LRF-based methods, aimed at addressing the generalization challenges. Specifically, for EquiShape, we employ cross-talk within separate equivariant graph neural networks (Cross-GVP) to build long-range dependencies to compensate for the lack of semantic information in local structure modeling, deducing pair-wise independent SE(3)-equivariant LRF vectors for each point. For LRF-Refine, the optimization adjusts LRFs within specific contexts and knowledge, enhancing the geometric and semantic generalizability of point features. Our overall framework surpasses the state-of-the-art methods by a large margin on three benchmarks. Code and models will be publicly available.
Related papers
- Double-Shot 3D Shape Measurement with a Dual-Branch Network [14.749887303860717]
We propose a dual-branch Convolutional Neural Network (CNN)-Transformer network (PDCNet) to process different structured light (SL) modalities.
Within PDCNet, a Transformer branch is used to capture global perception in the fringe images, while a CNN branch is designed to collect local details in the speckle images.
We show that our method can reduce fringe order ambiguity while producing high-accuracy results on a self-made dataset.
arXiv Detail & Related papers (2024-07-19T10:49:26Z) - Global-to-Local Modeling for Video-based 3D Human Pose and Shape
Estimation [53.04781510348416]
Video-based 3D human pose and shape estimations are evaluated by intra-frame accuracy and inter-frame smoothness.
We propose to structurally decouple the modeling of long-term and short-term correlations in an end-to-end framework, Global-to-Local Transformer (GLoT)
Our GLoT surpasses previous state-of-the-art methods with the lowest model parameters on popular benchmarks, i.e., 3DPW, MPI-INF-3DHP, and Human3.6M.
arXiv Detail & Related papers (2023-03-26T14:57:49Z) - Disentangled Federated Learning for Tackling Attributes Skew via
Invariant Aggregation and Diversity Transferring [104.19414150171472]
Attributes skews the current federated learning (FL) frameworks from consistent optimization directions among the clients.
We propose disentangled federated learning (DFL) to disentangle the domain-specific and cross-invariant attributes into two complementary branches.
Experiments verify that DFL facilitates FL with higher performance, better interpretability, and faster convergence rate, compared with SOTA FL methods.
arXiv Detail & Related papers (2022-06-14T13:12:12Z) - Spatio-Temporal Representation Factorization for Video-based Person
Re-Identification [55.01276167336187]
We propose Spatio-Temporal Representation Factorization module (STRF) for re-ID.
STRF is a flexible new computational unit that can be used in conjunction with most existing 3D convolutional neural network architectures for re-ID.
We empirically show that STRF improves performance of various existing baseline architectures while demonstrating new state-of-the-art results.
arXiv Detail & Related papers (2021-07-25T19:29:37Z) - G$^2$DA: Geometry-Guided Dual-Alignment Learning for RGB-Infrared Person
Re-Identification [3.909938091041451]
RGB-IR person re-identification aims to retrieve person-of-interest between heterogeneous modalities.
This paper presents a Geometry-Guided Dual-Alignment learning framework (G$2$DA) to tackle sample-level modality difference.
arXiv Detail & Related papers (2021-06-15T03:14:31Z) - Clustered Federated Learning via Generalized Total Variation
Minimization [83.26141667853057]
We study optimization methods to train local (or personalized) models for local datasets with a decentralized network structure.
Our main conceptual contribution is to formulate federated learning as total variation minimization (GTV)
Our main algorithmic contribution is a fully decentralized federated learning algorithm.
arXiv Detail & Related papers (2021-05-26T18:07:19Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) problem aims to recover 3D geometry of a deforming object from its 2D feature correspondences across multiple frames.
We show that our approach significantly improves accuracy, scalability, and robustness against noise.
arXiv Detail & Related papers (2020-06-15T09:15:54Z) - A Rotation-Invariant Framework for Deep Point Cloud Analysis [132.91915346157018]
We introduce a new low-level purely rotation-invariant representation to replace common 3D Cartesian coordinates as the network inputs.
Also, we present a network architecture to embed these representations into features, encoding local relations between points and their neighbors, and the global shape structure.
We evaluate our method on multiple point cloud analysis tasks, including shape classification, part segmentation, and shape retrieval.
arXiv Detail & Related papers (2020-03-16T14:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.