HAHA: Highly Articulated Gaussian Human Avatars with Textured Mesh Prior
- URL: http://arxiv.org/abs/2404.01053v2
- Date: Wed, 09 Oct 2024 14:00:51 GMT
- Title: HAHA: Highly Articulated Gaussian Human Avatars with Textured Mesh Prior
- Authors: David Svitov, Pietro Morerio, Lourdes Agapito, Alessio Del Bue,
- Abstract summary: HAHA is a novel approach for animatable human avatar generation from monocular input videos.
We demonstrate its efficiency to animate and render full-body human avatars controlled via the SMPL-X parametric model.
- Score: 24.094129395653134
- License:
- Abstract: We present HAHA - a novel approach for animatable human avatar generation from monocular input videos. The proposed method relies on learning the trade-off between the use of Gaussian splatting and a textured mesh for efficient and high fidelity rendering. We demonstrate its efficiency to animate and render full-body human avatars controlled via the SMPL-X parametric model. Our model learns to apply Gaussian splatting only in areas of the SMPL-X mesh where it is necessary, like hair and out-of-mesh clothing. This results in a minimal number of Gaussians being used to represent the full avatar, and reduced rendering artifacts. This allows us to handle the animation of small body parts such as fingers that are traditionally disregarded. We demonstrate the effectiveness of our approach on two open datasets: SnapshotPeople and X-Humans. Our method demonstrates on par reconstruction quality to the state-of-the-art on SnapshotPeople, while using less than a third of Gaussians. HAHA outperforms previous state-of-the-art on novel poses from X-Humans both quantitatively and qualitatively.
Related papers
- Generalizable and Animatable Gaussian Head Avatar [50.34788590904843]
We propose Generalizable and Animatable Gaussian head Avatar (GAGAvatar) for one-shot animatable head avatar reconstruction.
We generate the parameters of 3D Gaussians from a single image in a single forward pass.
Our method exhibits superior performance compared to previous methods in terms of reconstruction quality and expression accuracy.
arXiv Detail & Related papers (2024-10-10T14:29:00Z) - Expressive Gaussian Human Avatars from Monocular RGB Video [69.56388194249942]
We introduce EVA, a drivable human model that meticulously sculpts fine details based on 3D Gaussians and SMPL-X.
We highlight the critical importance of aligning the SMPL-X model with RGB frames for effective avatar learning.
We propose a context-aware adaptive density control strategy, which is adaptively adjusting the gradient thresholds.
arXiv Detail & Related papers (2024-07-03T15:36:27Z) - UV Gaussians: Joint Learning of Mesh Deformation and Gaussian Textures for Human Avatar Modeling [71.87807614875497]
We propose UV Gaussians, which models the 3D human body by jointly learning mesh deformations and 2D UV-space Gaussian textures.
We collect and process a new dataset of human motion, which includes multi-view images, scanned models, parametric model registration, and corresponding texture maps. Experimental results demonstrate that our method achieves state-of-the-art synthesis of novel view and novel pose.
arXiv Detail & Related papers (2024-03-18T09:03:56Z) - Deformable 3D Gaussian Splatting for Animatable Human Avatars [50.61374254699761]
We propose a fully explicit approach to construct a digital avatar from as little as a single monocular sequence.
ParDy-Human constitutes an explicit model for realistic dynamic human avatars which requires significantly fewer training views and images.
Our avatars learning is free of additional annotations such as Splat masks and can be trained with variable backgrounds while inferring full-resolution images efficiently even on consumer hardware.
arXiv Detail & Related papers (2023-12-22T20:56:46Z) - GAvatar: Animatable 3D Gaussian Avatars with Implicit Mesh Learning [60.33970027554299]
Gaussian splatting has emerged as a powerful 3D representation that harnesses the advantages of both explicit (mesh) and implicit (NeRF) 3D representations.
In this paper, we seek to leverage Gaussian splatting to generate realistic animatable avatars from textual descriptions.
Our proposed method, GAvatar, enables the large-scale generation of diverse animatable avatars using only text prompts.
arXiv Detail & Related papers (2023-12-18T18:59:12Z) - ASH: Animatable Gaussian Splats for Efficient and Photoreal Human Rendering [62.81677824868519]
We propose an animatable Gaussian splatting approach for photorealistic rendering of dynamic humans in real-time.
We parameterize the clothed human as animatable 3D Gaussians, which can be efficiently splatted into image space to generate the final rendering.
We benchmark ASH with competing methods on pose-controllable avatars, demonstrating that our method outperforms existing real-time methods by a large margin and shows comparable or even better results than offline methods.
arXiv Detail & Related papers (2023-12-10T17:07:37Z) - HUGS: Human Gaussian Splats [21.73294518957075]
We introduce Human Gaussian Splats (HUGS) that represents an animatable human together with the scene using 3D Gaussian Splatting (3DGS)
Our method takes only a monocular video with a small number of (50-100) frames, and it automatically learns to disentangle the static scene and a fully animatable human avatar within 30 minutes.
We achieve state-of-the-art rendering quality with a rendering speed of 60 FPS while being 100x faster to train over previous work.
arXiv Detail & Related papers (2023-11-29T18:56:32Z) - Human Gaussian Splatting: Real-time Rendering of Animatable Avatars [8.719797382786464]
This work addresses the problem of real-time rendering of photorealistic human body avatars learned from multi-view videos.
We propose an animatable human model based on 3D Gaussian Splatting, that has recently emerged as a very efficient alternative to neural radiance fields.
Our method achieves 1.5 dB PSNR improvement over the state-of-the-art on THuman4 dataset while being able to render in real-time (80 fps for 512x512 resolution)
arXiv Detail & Related papers (2023-11-28T12:05:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.