Topological phases and edge modes of an uneven ladder
- URL: http://arxiv.org/abs/2404.01097v1
- Date: Mon, 1 Apr 2024 13:07:31 GMT
- Title: Topological phases and edge modes of an uneven ladder
- Authors: Wen-Chuang Shang, Yi-Ning Han, Shimpei Endo, Chao Gao,
- Abstract summary: We investigate the topological properties of a two-chain quantum ladder with uneven legs.
Such an uneven ladder presents rich band structures classified by the closure of either direct or indirect bandgaps.
We propose that uneven ladders can be realized by spin-dependent optical lattices.
- Score: 10.192360653612896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the topological properties of a two-chain quantum ladder with uneven legs, i.e. the two chains differ in their periods by a factor of two. Such an uneven ladder presents rich band structures classified by the closure of either direct or indirect bandgaps. It also provides opportunities to explore fundamental concepts concerning band topology and edge modes, including the difference of intracellular and intercellular Zak phases, and the role of the inversion symmetry (IS). We calculate the Zak phases of the two kinds and find excellent agreement with the dipole moment and extra charge accumulation, respectively. We also find that configurations with IS feature a pair of degenerate two-side edge modes emerging as the closure of the direct bandgap, while configurations without IS feature one-side edge modes emerging as not only the closure of both direct and indirect bandgap but also within the band continuum. Furthermore, by projecting to the two sublattices, we find that the effective Bloch Hamiltonian corresponds to that of a generalized Su-Schrieffer-Heeger model or Rice-Mele model whose hopping amplitudes depend on the quasimomentum. In this way, the topological phases can be efficiently extracted through winding numbers. We propose that uneven ladders can be realized by spin-dependent optical lattices and their rich topological characteristics can be examined by near future experiments.
Related papers
- Exceptional Points and Braiding Topology in Non-Hermitian Systems with long-range coupling [0.0]
We present a study of complex energy braiding in a 1D non-Hermitian system with $n$th order long range coupling.
Our work highlights the emergence of novel topological phenomena in such systems.
arXiv Detail & Related papers (2024-07-05T17:55:48Z) - Two-dimensional topological effect in a transmon qubit array with tunable couplings [6.358193602870173]
We investigate a square-lattice architecture of superconducting transmon qubits with inter-qubit interactions mediated by inductive couplers.
The inductive couling between the qubit and couplers is suggested to be designed into the gradiometer form to intigimate the flux noise orginating from the environment.
We present a systematic method on how to measure the topological band structure based on time- and space-domain Frourier transformation of the wave function after properly excited.
arXiv Detail & Related papers (2024-02-05T00:57:12Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Tuning the topology of $p$-wave superconductivity in an analytically
solvable two-band model [0.0]
We introduce and solve a two-band model of spinless fermions with $p_x$-wave pairing on a square lattice.
We show that its phase diagram contains a topologically nontrivial weak pairing phase as well as a trivial strong pairing phase.
arXiv Detail & Related papers (2020-10-01T01:20:46Z) - Flat bands and $Z_2$ topological phases in a non-Abelian kagome lattice [0.0]
We introduce a non-Abelian kagome lattice model that has both time-reversal and inversion symmetries.
We study the gapped phases of the model and show that they belong to the same phase as the band gaps only close at discrete points of the parameter space.
arXiv Detail & Related papers (2020-08-24T22:39:08Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Non-Hermitian Floquet phases with even-integer topological invariants in
a periodically quenched two-leg ladder [0.0]
Periodically driven non-Hermitian systems could possess exotic nonequilibrium phases with unique topological, dynamical and transport properties.
We introduce an experimentally realizable two-leg ladder model subjecting to both time-periodic quenches and non-Hermitian effects.
Our work thus introduces a new type of non-Hermitian Floquet topological matter, and further reveals the richness of topology and dynamics in driven open systems.
arXiv Detail & Related papers (2020-06-16T03:22:53Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Radiative topological biphoton states in modulated qubit arrays [105.54048699217668]
We study topological properties of bound pairs of photons in spatially-modulated qubit arrays coupled to a waveguide.
For open boundary condition, we find exotic topological bound-pair edge states with radiative losses.
By joining two structures with different spatial modulations, we find long-lived interface states which may have applications in storage and quantum information processing.
arXiv Detail & Related papers (2020-02-24T04:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.