Strong quantum state transfer on graphs via loop edges
- URL: http://arxiv.org/abs/2404.01173v1
- Date: Mon, 1 Apr 2024 15:26:38 GMT
- Title: Strong quantum state transfer on graphs via loop edges
- Authors: Gabor Lippner, Yujia Shi,
- Abstract summary: We quantify the effect of weighted loops at the source and target nodes of a graph on the strength of quantum state transfer.
By considering local spectral symmetry, we show that the required weight depends only on the maximum degree of the graph.
- Score: 0.39462888523270856
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We quantify the effect of weighted loops at the source and target nodes of a graph on the strength of quantum state transfer between these vertices. We give lower bounds on loop weights that guarantee strong transfer fidelity that works for any graph where this protocol is feasible. By considering local spectral symmetry, we show that the required weight size depends only on the maximum degree of the graph and, in some less favorable cases, the distance between vertices. Additionally, we explore the duration for which transfer strength remains above a specified threshold.
Related papers
- State transfer in discrete-time quantum walks via projected transition matrices [0.0]
We consider state transfer in quantum walks by using methods.
We define peak state transfer as the highest state transfer that could be achieved between an initial and a target state.
arXiv Detail & Related papers (2024-11-08T13:35:27Z) - Entanglement of multi-qubit states representing directed networks and its detection with quantum computing [0.0]
We consider quantum graph states that can be mapped to directed weighted graphs, also known as directed networks.
The geometric measure of entanglement of the states is calculated for the quantum graph states corresponding to arbitrary graphs.
arXiv Detail & Related papers (2024-07-13T19:36:11Z) - Quantum transport in randomized quantum graphs [0.0]
We calculate the transmission coefficient of randomized quantum graphs (RQG)
The main results show that the transport is importantly affected by the removal of connections between pairs of vertices.
They also indicate the presence of a region where the transmission is fully suppressed, even when the number of edge removal is not too small.
arXiv Detail & Related papers (2024-04-14T00:20:39Z) - Limits, approximation and size transferability for GNNs on sparse graphs
via graphops [44.02161831977037]
We take a perspective of taking limits of operators derived from graphs, such as the aggregation operation that makes up GNNs.
Our results hold for dense and sparse graphs, and various notions of graph limits.
arXiv Detail & Related papers (2023-06-07T15:04:58Z) - Quantum max-flow in the bridge graph [0.10742675209112622]
The quantum max-flow quantifies the maximal possible entanglement between two regions of a tensor network state for a fixed graph and fixed bond dimensions.
We draw connections to the theory of prehomogenous tensor and the representation theory of quivers.
arXiv Detail & Related papers (2022-12-19T19:07:37Z) - Exact solution of a family of staggered Heisenberg chains with
conclusive pretty good quantum state transfer [68.8204255655161]
We work out the exact solutions in the one-excitation subspace.
We present numerical evidence that pretty good transmission is achieved by chains whose length is not a power of two.
arXiv Detail & Related papers (2022-06-28T18:31:09Z) - A Quantum Optimal Control Problem with State Constrained Preserving
Coherence [68.8204255655161]
We consider a three-level $Lambda$-type atom subjected to Markovian decoherence characterized by non-unital decoherence channels.
We formulate the quantum optimal control problem with state constraints where the decoherence level remains within a pre-defined bound.
arXiv Detail & Related papers (2022-03-24T21:31:34Z) - Feedback-assisted quantum search by continuous-time quantum walks [58.720142291102135]
We address the quantum search of a target node on a cycle graph by means of a quantum walk assisted by continuous measurement and feedback.
In particular, our protocol is able to drive the walker to a desired target node.
arXiv Detail & Related papers (2022-01-12T16:59:53Z) - Quantum state transfer between twins in weighted graphs [0.0]
We explore the role of twin vertices in quantum state transfer.
We provide characterizations of periodicity, perfect state transfer, and pretty good state transfer.
As an application, we provide characterizations of all simple unweighted double cones on regular graphs that exhibit periodicity, perfect state transfer, and pretty good state transfer.
arXiv Detail & Related papers (2022-01-08T01:15:24Z) - Pretty good quantum state transfer on isotropic and anisotropic
Heisenberg spin chains with tailored site dependent exchange couplings [68.8204255655161]
We consider chains with isotropic and anisotropic Heisenberg Hamiltonian with up to 100 spins.
We consider short transferred times, in particular shorter than those achievable with known time-dependent control schemes.
arXiv Detail & Related papers (2021-01-08T19:32:10Z) - Spectra of Perfect State Transfer Hamiltonians on Fractal-Like Graphs [62.997667081978825]
We study the spectral features, on fractal-like graphs, of Hamiltonians which exhibit the special property of perfect quantum state transfer.
The essential goal is to develop the theoretical framework for understanding the interplay between perfect quantum state transfer, spectral properties, and the geometry of the underlying graph.
arXiv Detail & Related papers (2020-03-25T02:46:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.