論文の概要: Efficient Motion Planning for Manipulators with Control Barrier Function-Induced Neural Controller
- arxiv url: http://arxiv.org/abs/2404.01184v1
- Date: Mon, 1 Apr 2024 15:36:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 22:05:48.883384
- Title: Efficient Motion Planning for Manipulators with Control Barrier Function-Induced Neural Controller
- Title(参考訳): 制御バリア関数誘導型ニューラルコントローラを用いたマニピュレータの効率的な動作計画
- Authors: Mingxin Yu, Chenning Yu, M-Mahdi Naddaf-Sh, Devesh Upadhyay, Sicun Gao, Chuchu Fan,
- Abstract要約: 本稿では、サンプリングベースモーションプランナRTRに必要なサンプル数を削減すべく、CBFベースのステアリングコントローラを提案する。
本手法は, リアルタイム衝突回避制御におけるCBFの強度と, 長距離移動計画のためのRTとを組み合わせたものである。
- 参考スコア(独自算出の注目度): 20.96625501481311
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sampling-based motion planning methods for manipulators in crowded environments often suffer from expensive collision checking and high sampling complexity, which make them difficult to use in real time. To address this issue, we propose a new generalizable control barrier function (CBF)-based steering controller to reduce the number of samples needed in a sampling-based motion planner RRT. Our method combines the strength of CBF for real-time collision-avoidance control and RRT for long-horizon motion planning, by using CBF-induced neural controller (CBF-INC) to generate control signals that steer the system towards sampled configurations by RRT. CBF-INC is learned as Neural Networks and has two variants handling different inputs, respectively: state (signed distance) input and point-cloud input from LiDAR. In the latter case, we also study two different settings: fully and partially observed environmental information. Compared to manually crafted CBF which suffers from over-approximating robot geometry, CBF-INC can balance safety and goal-reaching better without being over-conservative. Given state-based input, our neural CBF-induced neural controller-enhanced RRT (CBF-INC-RRT) can increase the success rate by 14% while reducing the number of nodes explored by 30%, compared with vanilla RRT on hard test cases. Given LiDAR input where vanilla RRT is not directly applicable, we demonstrate that our CBF-INC-RRT can improve the success rate by 10%, compared with planning with other steering controllers. Our project page with supplementary material is at https://mit-realm.github.io/CBF-INC-RRT-website/.
- Abstract(参考訳): 混雑した環境下でのマニピュレータのサンプリングに基づく動作計画法は、しばしば高価な衝突チェックと高いサンプリング複雑性に悩まされ、リアルタイムでの使用が困難になる。
そこで本研究では,サンプリング型モーションプランナRTRに必要なサンプル数を削減するために,CBFベースのステアリングコントローラを提案する。
本手法は, CBF誘導型ニューラルコントローラ(CBF-INC)を用いて, リアルタイム衝突回避制御のためのCBFの強度と, 長距離移動計画のためのRTTの強度を組み合わせて, RRTによるサンプル設定に向けて制御する制御信号を生成する。
CBF-INCはニューラルネットワークとして学習され、状態(符号距離)入力とLiDARからのポイントクラウド入力の2つの異なる入力を処理する。
後者では,完全かつ部分的に観察された環境情報という2つの異なる設定についても検討する。
CBF-INCは、ロボット幾何学の過度な近似に苦しむ手作りのCBFと比べ、過保守でなくても安全性と目標達成のバランスが良くなる。
CBF-INC-RRT(英語版)は、状態に基づく入力により、ハードテストケースでのバニラRTと比較して、30%の探索ノード数を減らしながら、成功率を14%向上させることができる。
バニラRTが直接適用されないLiDAR入力を考えると、他のステアリングコントローラとの計画と比較してCBF-INC-RRTは成功率を10%向上させることができる。
補助材料を備えたプロジェクトページはhttps://mit-realm.github.io/CBF-INC-RRT-website/。
関連論文リスト
- Fault Tolerant Neural Control Barrier Functions for Robotic Systems
under Sensor Faults and Attacks [6.314000948709254]
センサ故障および攻撃下でのロボットシステムの安全臨界制御合成について検討した。
我々の主な貢献は、障害耐性神経制御バリア機能(FT-NCBF)と呼ばれる新しいCBFの開発と合成である。
論文 参考訳(メタデータ) (2024-02-28T19:44:19Z) - Safe Neural Control for Non-Affine Control Systems with Differentiable
Control Barrier Functions [58.19198103790931]
本稿では,非アフィン制御系における安全クリティカル制御の問題に対処する。
制御バリア関数(CBF)を用いて,状態制約と制御制約の2次コストの最適化を2次プログラムのシーケンス(QP)にサブ最適化できることが示されている。
我々は,高次CBFをニューラル常微分方程式に基づく学習モデルに差分CBFとして組み込んで,非アフィン制御系の安全性を保証する。
論文 参考訳(メタデータ) (2023-09-06T05:35:48Z) - Learning Robust and Correct Controllers from Signal Temporal Logic
Specifications Using BarrierNet [5.809331819510702]
我々は,STL定量的セマンティクスを利用して,ロバスト満足度の概念を定義した。
本研究では,STLのフラグメント内の式を満足させる訓練可能な高次制御バリア関数(HOCBF)を構築する。
我々は、他のニューラルネットワークパラメータとともにHOCBFをトレーニングし、コントローラの堅牢性をさらに向上させる。
論文 参考訳(メタデータ) (2023-04-12T21:12:15Z) - Learned Risk Metric Maps for Kinodynamic Systems [54.49871675894546]
本研究では,高次元力学系のコヒーレントリスクメトリクスをリアルタイムに推定するための学習型リスクメトリクスマップを提案する。
LRMMモデルは設計と訓練が簡単で、障害セットの手続き的生成、状態と制御のサンプリング、および関数近似器の教師付きトレーニングのみを必要とする。
論文 参考訳(メタデータ) (2023-02-28T17:51:43Z) - Robust, High-Rate Trajectory Tracking on Insect-Scale Soft-Actuated
Aerial Robots with Deep-Learned Tube MPC [0.0]
サブグラムMAV (0.7 グラム) であるMIT SoftFly 上でのアジャイルで効率的な軌道追跡手法を提案する。
我々の戦略は、適応型姿勢制御器と、軌跡追跡堅牢管モデル予測制御器(RTMPC)を模倣する訓練されたニューラルネットワークポリシーを組み合わせたカスケード制御方式を用いている。
我々は,本手法を実験的に評価し,より困難な操作でもルート平均角誤差を1.8cm以下に抑え,従来の作業に比べて最大位置誤差を60%低減し,大きな外乱に対する堅牢性を実証した。
論文 参考訳(メタデータ) (2022-09-20T21:30:16Z) - Federated Channel Learning for Intelligent Reflecting Surfaces With
Fewer Pilot Signals [25.592568132720157]
本稿では,IRS支援無線システムにおける直接チャネルとカスケードチャネルの両方を共同で推定するフェデレートラーニング(FL)フレームワークを提案する。
提案手法ではパイロット信号が約60%少なくなり,CLの12倍の伝送オーバヘッドが得られた。
論文 参考訳(メタデータ) (2022-05-06T13:23:39Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
本稿では,専門家によるデモンストレーションの部分的な観察から,安全な出力フィードバック制御法を考察する。
まず,安全性を保証する手段として,ロバスト出力制御バリア関数(ROCBF)を提案する。
次に、安全なシステム動作を示す専門家による実証からROCBFを学習するための最適化問題を定式化する。
論文 参考訳(メタデータ) (2021-11-18T23:21:00Z) - Beta-CROWN: Efficient Bound Propagation with Per-neuron Split
Constraints for Complete and Incomplete Neural Network Verification [151.62491805851107]
私たちは、ニューロン毎の分割を完全にエンコードできるバウンド伝搬ベースの検証器である$beta$-crownを開発した。
Beta$-CROWNはLPベースのBaB法よりも3桁近い速さで堅牢性検証が可能です。
BaBを早期に終了することにより、不完全な検証にも使用できます。
論文 参考訳(メタデータ) (2021-03-11T11:56:54Z) - Optimizing Mixed Autonomy Traffic Flow With Decentralized Autonomous
Vehicles and Multi-Agent RL [63.52264764099532]
本研究では、完全分散制御方式を用いて、混合自律環境でのボトルネックのスループットを向上させる自動運転車の能力について検討する。
この問題にマルチエージェント強化アルゴリズムを適用し、5%の浸透速度で20%から40%の浸透速度で33%までのボトルネックスループットの大幅な改善が達成できることを実証した。
論文 参考訳(メタデータ) (2020-10-30T22:06:05Z) - Learning Control Barrier Functions from Expert Demonstrations [69.23675822701357]
制御障壁関数(CBF)に基づく安全な制御器合成のための学習に基づくアプローチを提案する。
最適化に基づくCBFの学習手法を解析し、基礎となる力学系のリプシッツ仮定の下で証明可能な安全保証を享受する。
私たちの知る限りでは、これらはデータから確実に安全な制御障壁関数を学習する最初の結果です。
論文 参考訳(メタデータ) (2020-04-07T12:29:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。