論文の概要: Robust, High-Rate Trajectory Tracking on Insect-Scale Soft-Actuated
Aerial Robots with Deep-Learned Tube MPC
- arxiv url: http://arxiv.org/abs/2209.10007v1
- Date: Tue, 20 Sep 2022 21:30:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-22 17:19:34.466677
- Title: Robust, High-Rate Trajectory Tracking on Insect-Scale Soft-Actuated
Aerial Robots with Deep-Learned Tube MPC
- Title(参考訳): 深海管mpcを用いた昆虫小型軟動空中ロボットのロバスト・高速追跡
- Authors: Andrea Tagliabue (1), Yi-Hsuan Hsiao (2), Urban Fasel (3), J. Nathan
Kutz (4), Steven L. Brunton (5), YuFeng Chen (2) and Jonathan P. How (1) ((1)
Department of Aeronautics and Astronautics, Massachusetts Institute of
Technology, (2) Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, (3) Department of Aeronautics,
Imperial College London, (4) Department of Applied Mathematics, University of
Washington, (5) Department of Mechanical Engineering, University of
Washington)
- Abstract要約: サブグラムMAV (0.7 グラム) であるMIT SoftFly 上でのアジャイルで効率的な軌道追跡手法を提案する。
我々の戦略は、適応型姿勢制御器と、軌跡追跡堅牢管モデル予測制御器(RTMPC)を模倣する訓練されたニューラルネットワークポリシーを組み合わせたカスケード制御方式を用いている。
我々は,本手法を実験的に評価し,より困難な操作でもルート平均角誤差を1.8cm以下に抑え,従来の作業に比べて最大位置誤差を60%低減し,大きな外乱に対する堅牢性を実証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and agile trajectory tracking in sub-gram Micro Aerial Vehicles
(MAVs) is challenging, as the small scale of the robot induces large model
uncertainties, demanding robust feedback controllers, while the fast dynamics
and computational constraints prevent the deployment of computationally
expensive strategies. In this work, we present an approach for agile and
computationally efficient trajectory tracking on the MIT SoftFly, a sub-gram
MAV (0.7 grams). Our strategy employs a cascaded control scheme, where an
adaptive attitude controller is combined with a neural network policy trained
to imitate a trajectory tracking robust tube model predictive controller
(RTMPC). The neural network policy is obtained using our recent work, which
enables the policy to preserve the robustness of RTMPC, but at a fraction of
its computational cost. We experimentally evaluate our approach, achieving
position Root Mean Square Errors lower than 1.8 cm even in the more challenging
maneuvers, obtaining a 60% reduction in maximum position error compared to our
previous work, and demonstrating robustness to large external disturbances
- Abstract(参考訳): マイクロ・エアリアル・ビークル(MAV)の高精度かつアジャイルな軌道追跡は、ロボットの小さなスケールが大きなモデルの不確実性を誘導し、堅牢なフィードバックコントローラを要求する一方で、高速なダイナミックスと計算の制約が計算コストのかかる戦略の展開を妨げているため、困難である。
本研究では,サブグラムMAV (0.7gs) であるMIT SoftFly 上で,アジャイルで効率的な軌道追跡手法を提案する。
提案手法では,適応姿勢制御器と,軌道追従型ロバスト管モデル予測制御器(rtmpc)を模倣するニューラルネットワークポリシを組み合わせたカスケード制御方式を採用している。
ニューラルネットワークポリシは,rtmpcのロバスト性を維持しつつ,その計算コストのごく一部で実現可能な,最近の研究で得られたものである。
我々は,我々のアプローチを実験的に評価し,より困難な操作においても,ルート平均角誤差を1.8cm以下にし,従来の作業に比べて最大位置誤差を60%低減し,大きな外乱に対する堅牢性を実証した。
関連論文リスト
- Custom Non-Linear Model Predictive Control for Obstacle Avoidance in Indoor and Outdoor Environments [0.0]
本稿では,DJI行列100のための非線形モデル予測制御(NMPC)フレームワークを提案する。
このフレームワークは様々なトラジェクトリタイプをサポートし、厳密な操作の精度を制御するためにペナルティベースのコスト関数を採用している。
論文 参考訳(メタデータ) (2024-10-03T17:50:19Z) - Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
ロボット工学では、現代の戦略は学習に基づくもので、複雑なブラックボックスの性質と解釈可能性の欠如が特徴である。
本稿では, 深部強化学習(DRL)に基づく衝突のない軌道プランナと, 自動調整型低レベル制御戦略を統合することを提案する。
論文 参考訳(メタデータ) (2024-02-04T15:54:03Z) - Tube-NeRF: Efficient Imitation Learning of Visuomotor Policies from MPC
using Tube-Guided Data Augmentation and NeRFs [42.220568722735095]
感性学習(IL)は資源集約型モデル予測制御器(MPC)から計算効率の高い感触者ポリシーを訓練できる
本稿では,ビジョンベースのポリシーを効率的に学習するデータ拡張(DA)戦略を提案する。
実演効率は80倍に向上し,現行のIL法に比べてトレーニング時間を50%削減した。
論文 参考訳(メタデータ) (2023-11-23T18:54:25Z) - Tuning Legged Locomotion Controllers via Safe Bayesian Optimization [47.87675010450171]
本稿では,ロボットハードウェアプラットフォームにおけるモデルベースコントローラの展開を効率化するための,データ駆動型戦略を提案する。
モデルフリーな安全な学習アルゴリズムを用いて制御ゲインのチューニングを自動化し、制御定式化で使用される単純化されたモデルと実システムとのミスマッチに対処する。
論文 参考訳(メタデータ) (2023-06-12T13:10:14Z) - Training Efficient Controllers via Analytic Policy Gradient [44.0762454494769]
ロボットシステムの制御設計は複雑であり、しばしば軌道を正確に追従するために最適化を解く必要がある。
Model Predictive Control (MPC)のようなオンライン最適化手法は、優れたトラッキング性能を実現するために示されているが、高い計算能力を必要とする。
本稿では,この問題に対処するための分析政策グラディエント(APG)手法を提案する。
論文 参考訳(メタデータ) (2022-09-26T22:04:35Z) - Policy Search for Model Predictive Control with Application to Agile
Drone Flight [56.24908013905407]
MPCのためのポリシ・フォー・モデル・予測制御フレームワークを提案する。
具体的には、パラメータ化コントローラとしてMPCを定式化し、パラメータ化の難しい決定変数を高レベルポリシーとして表現する。
シミュレーションと実環境の両方において,我々の制御器が堅牢かつリアルタイムに制御性能を発揮することを示す実験を行った。
論文 参考訳(メタデータ) (2021-12-07T17:39:24Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
本稿では,リアル・ツー・シムの報酬分析手法を導入し,リアルなロボット・プラットフォームに対する行動の可能性を確実に予測する。
連続的なアクション空間でオブジェクトを反応的にプッシュするクローズドループコントローラを作成します。
我々は,RMPCが乱雑な環境だけでなく,乱雑な環境においても頑健であり,ベースラインよりも優れていることを観察した。
論文 参考訳(メタデータ) (2021-11-15T18:50:04Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Regret-optimal Estimation and Control [52.28457815067461]
後悔最適推定器と後悔最適制御器は状態空間形式で導出可能であることを示す。
非線形力学系に対するモデル予測制御(MPC)と拡張KalmanFilter(EKF)の残差最適類似性を提案する。
論文 参考訳(メタデータ) (2021-06-22T23:14:21Z) - Towards Safe Control of Continuum Manipulator Using Shielded Multiagent
Reinforcement Learning [1.2647816797166165]
ロボットの制御は、MADQNフレームワークにおける1つのエージェント問題である1-DoFとして定式化され、学習効率が向上する。
シールドされたMADQNにより、ロボットは外部負荷下で、サブミリ単位のルート平均二乗誤差で点と軌道追跡を行うことができた。
論文 参考訳(メタデータ) (2021-06-15T05:55:05Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
我々は,制約付きポリシー最適化(CPPO)の実装に基づくRLフレームワークであるGCPOを紹介する。
誘導制約付きRLは所望の最適値に近い高速収束を実現し,正確な報酬関数チューニングを必要とせず,最適かつ物理的に実現可能なロボット制御動作を実現することを示す。
論文 参考訳(メタデータ) (2020-02-22T10:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。