論文の概要: Stable Code Technical Report
- arxiv url: http://arxiv.org/abs/2404.01226v1
- Date: Mon, 1 Apr 2024 16:39:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 21:46:03.121617
- Title: Stable Code Technical Report
- Title(参考訳): 安定コード技術レポート
- Authors: Nikhil Pinnaparaju, Reshinth Adithyan, Duy Phung, Jonathan Tow, James Baicoianu, Ashish Datta, Maksym Zhuravinskyi, Dakota Mahan, Marco Bellagente, Carlos Riquelme, Nathan Cooper,
- Abstract要約: 安定コード(Stable Code)は、コード補完、推論、数学、その他のソフトウェア工学ベースのタスクをターゲットにした汎用のベースコード言語モデルである。
安定的なコードインストラクションは、質問応答と命令ベースのタスクを実行するために、自然なチャットインターフェースでモデルと会話することを可能にする。
- 参考スコア(独自算出の注目度): 7.303784606231683
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Stable Code, the first in our new-generation of code language models series, which serves as a general-purpose base code language model targeting code completion, reasoning, math, and other software engineering-based tasks. Additionally, we introduce an instruction variant named Stable Code Instruct that allows conversing with the model in a natural chat interface for performing question-answering and instruction-based tasks. In this technical report, we detail the data and training procedure leading to both models. Their weights are available via Hugging Face for anyone to download and use at https://huggingface.co/stabilityai/stable-code-3b and https://huggingface.co/stabilityai/stable-code-instruct-3b. This report contains thorough evaluations of the models, including multilingual programming benchmarks, and the MT benchmark focusing on multi-turn dialogues. At the time of its release, Stable Code is the state-of-the-art open model under 3B parameters and even performs comparably to larger models of sizes 7 billion and 15 billion parameters on the popular Multi-PL benchmark. Stable Code Instruct also exhibits state-of-the-art performance on the MT-Bench coding tasks and on Multi-PL completion compared to other instruction tuned models. Given its appealing small size, we also provide throughput measurements on a number of edge devices. In addition, we open source several quantized checkpoints and provide their performance metrics compared to the original model.
- Abstract(参考訳): これは、コード補完、推論、数学、その他のソフトウェア工学ベースのタスクをターゲットにした汎用のベースコード言語モデルとして機能します。
また,Stable Code Instructという命令変種を導入し,自然なチャットインタフェースでモデルと対話し,質問応答や命令ベースのタスクを実行する。
この技術報告では、両方のモデルに繋がるデータとトレーニング手順について詳述する。
Hugging Faceはhttps://huggingface.co/stabilityai/stable-code-3bとhttps://huggingface.co/stabilityai/stable-code-instruct-3bで誰でもダウンロードできる。
本報告では,多言語プログラミングベンチマークやマルチターン対話に着目したMTベンチマークなど,モデルの徹底的な評価を行う。
リリース時点では、Stable Codeは3Bパラメータの下で最先端のオープンモデルであり、人気のあるMulti-PLベンチマークで70億と150億のパラメータのより大きなモデルと互換性がある。
Stable Code InstructはMT-Benchのコーディングタスクや、他の命令チューニングモデルと比較してMulti-PLコンプリートでも、最先端のパフォーマンスを示している。
非常に小さなサイズなので、多くのエッジデバイスでスループットの測定も行います。
さらに、いくつかの定量化されたチェックポイントをオープンソース化し、元のモデルと比較したパフォーマンス指標を提供する。
関連論文リスト
- Code Representation Learning At Scale [75.04686476303436]
2段階の事前学習スキームを用いて,大量のコードデータを用いてコード表現学習を行う。
まず、マスキング言語モデリングにおけるランダム性と、プログラミング言語の構造的側面の両方を活用して、エンコーダを訓練する。
そして、教師なしの方法で強陰性かつ強正に構築された対照的な学習を通して表現を強化する。
論文 参考訳(メタデータ) (2024-02-02T22:19:15Z) - INSPECT: Intrinsic and Systematic Probing Evaluation for Code
Transformers [7.255653248042546]
我々は、ソースコードの表面、構文、構造、意味的特性を訓練する15の探索タスクを定義するためにフレームワークを使用します。
8つの事前訓練されたソースコードモデルと、ベースラインとして自然言語モデル(BERT)を探索する。
構造情報(GraphCodeBERTなど)を組み込んだモデルの方が,ソースコードの特徴をよりよく表現できることがわかった。
論文 参考訳(メタデータ) (2023-12-08T15:21:54Z) - Instruct2Act: Mapping Multi-modality Instructions to Robotic Actions
with Large Language Model [63.66204449776262]
Instruct2Actは、ロボット操作タスクのシーケンシャルアクションにマルチモーダル命令をマッピングするフレームワークである。
我々のアプローチは、様々な命令のモダリティや入力タイプを調節する上で、調整可能で柔軟なものである。
我々のゼロショット法は、いくつかのタスクにおいて、最先端の学習ベースのポリシーよりも優れていた。
論文 参考訳(メタデータ) (2023-05-18T17:59:49Z) - CodeT5+: Open Code Large Language Models for Code Understanding and
Generation [72.1638273937025]
大きな言語モデル (LLM) は膨大なソースコードで事前訓練されており、コードインテリジェンスにおいて顕著な進歩を遂げている。
CodeT5+は、コンポーネントモジュールを柔軟に組み合わせて、幅広い下流のコードタスクに適合させることができるコードのためのエンコーダ-デコーダLLMのファミリーである。
我々は、ゼロショット、微調整、命令調整を含む20以上のコード関連ベンチマークでCodeT5+を広範囲に評価した。
論文 参考訳(メタデータ) (2023-05-13T14:23:07Z) - Enriching Source Code with Contextual Data for Code Completion Models:
An Empirical Study [4.438873396405334]
コンテクストデータを用いてコードを理解しやすくすることで、コード補完作業のための事前学習された言語モデルの性能が向上するかどうかを問う。
コメントについては、マルチラインコメントの存在下でモデルの性能が向上していることが分かる。
論文 参考訳(メタデータ) (2023-04-24T17:09:14Z) - Coder Reviewer Reranking for Code Generation [56.80381384717]
本稿では,コード言語モデルから多様なプログラムを抽出し,モデル確率で再ランク付けする手法として,Coder-Reviewerの再ランク付けを提案する。
実験の結果、Coder-Reviewerのリランクは、Coderモデルのみのリランクよりも一貫性と大幅な改善をもたらすことが示された。
Coder-Reviewerのリランクは、プロンプトによって実装が容易で、異なるプログラミング言語に一般化でき、既定のハイパーパラメータとうまく機能する。
論文 参考訳(メタデータ) (2022-11-29T18:56:33Z) - An Understanding-Oriented Robust Machine Reading Comprehension Model [12.870425062204035]
本稿では,3種類のロバスト性問題に対処する理解指向機械読解モデルを提案する。
具体的には、入力された質問の正確な意味を理解するために、まず自然言語推論モジュールを使用します。
第3に,一般化の問題に対処する多言語学習機構を提案する。
論文 参考訳(メタデータ) (2022-07-01T03:32:02Z) - NatGen: Generative pre-training by "Naturalizing" source code [18.410818213965918]
我々は,ソースコードの「成熟化」という新たな事前学習目標を提案する。
自然言語とは異なり、コードのバイモーダルでデュアルチャネルの性質により、意味論的に等価なコードを大規模に生成することができます。
私たちは、CodeT5に匹敵する最先端のパフォーマンスを達成するために、3つの生成ソフトウェアエンジニアリングタスクでモデルを微調整します。
論文 参考訳(メタデータ) (2022-06-15T15:08:29Z) - Meta Learning for Code Summarization [10.403206672504664]
コード要約のための3つのSOTAモデルは、大きなコードベースのほぼ不整合部分集合でうまく機能することを示す。
与えられたコードセグメントに対して最適な候補サマリーを選択する3つのメタモデルを提案する。
論文 参考訳(メタデータ) (2022-01-20T17:23:34Z) - Measuring Coding Challenge Competence With APPS [54.22600767666257]
コード生成のベンチマークであるAPPSを紹介する。
私たちのベンチマークには1万の問題が含まれています。
GPT-Neoのような最近のモデルでは、導入問題のテストケースの約15%をパスできる。
論文 参考訳(メタデータ) (2021-05-20T17:58:42Z) - CodeBERT: A Pre-Trained Model for Programming and Natural Languages [117.34242908773061]
CodeBERTは、プログラミング言語(PL)とナット言語(NL)のための事前訓練されたモデルである。
我々はTransformerベースのニューラルアーキテクチャを用いたCodeBERTを開発した。
モデルパラメータの微調整による2つのNL-PLアプリケーション上でのCodeBERTの評価を行った。
論文 参考訳(メタデータ) (2020-02-19T13:09:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。