Cluster state as a non-invertible symmetry protected topological phase
- URL: http://arxiv.org/abs/2404.01369v2
- Date: Thu, 26 Sep 2024 02:56:16 GMT
- Title: Cluster state as a non-invertible symmetry protected topological phase
- Authors: Sahand Seifnashri, Shu-Heng Shao,
- Abstract summary: We show that the standard 1+1d $mathbbZ tensortimes mathbbZ$ cluster model has a non-invertible global symmetry.
We identify the edge modes and the local projective algebras at the interfaces between these non-invertible SPT phases.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that the standard 1+1d $\mathbb{Z}_2\times \mathbb{Z}_2$ cluster model has a non-invertible global symmetry, described by the fusion category Rep(D$_8$). Therefore, the cluster state is not only a $\mathbb{Z}_2\times \mathbb{Z}_2$ symmetry protected topological (SPT) phase, but also a non-invertible SPT phase. We further find two new commuting Pauli Hamiltonians for the other two Rep(D$_8$) SPT phases on a tensor product Hilbert space of qubits, matching the classification in field theory and mathematics. We identify the edge modes and the local projective algebras at the interfaces between these non-invertible SPT phases. Finally, we show that there does not exist a symmetric entangler that maps between these distinct SPT states.
Related papers
- 1+1d SPT phases with fusion category symmetry: interface modes and non-abelian Thouless pump [0.0]
We consider $mathcalC$-SPT phases with finite non-invertible symmetry in 1+1d.
We show that there must be a degenerate interface mode between different $mathcalC$-SPT phases.
Our invariant is identified with a non-abelian generalization of the Thouless charge pump.
arXiv Detail & Related papers (2024-08-28T17:26:18Z) - Non-invertible SPT, gauging and symmetry fractionalization [2.541410020898643]
We construct the lattice models for the phases of all the symmetries in the Rep($Q_8$) duality web.
We show that these interplay can be explained using the symmetry fractionalization in the 2+1d bulk SET.
arXiv Detail & Related papers (2024-05-24T21:35:55Z) - Realizing triality and $p$-ality by lattice twisted gauging in (1+1)d quantum spin systems [0.0]
We define the twisted Gauss law operator and implement the twisted gauging of the finite group on the lattice.
We show the twisted gauging is equivalent to the two-step procedure of first applying the SPT entangler and then untwisted gauging.
arXiv Detail & Related papers (2024-05-23T18:00:02Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - (2+1)D topological phases with RT symmetry: many-body invariant, classification, and higher order edge modes [6.267386954898001]
We consider many-body systems of interacting fermions with fermionic symmetry groups $G_f mathbbZf times mathbbZ$.
We show that (2+1)D invertible fermionic phases with these symmetries have a $mathbbZ times mathbbZ_8$, $mathbbZ_8$, $mathbbZ2 times mathbbZ$, and $mathbbZ2
arXiv Detail & Related papers (2024-03-27T18:00:00Z) - Symmetry-restricted quantum circuits are still well-behaved [45.89137831674385]
We show that quantum circuits restricted by a symmetry inherit the properties of the whole special unitary group $SU(2n)$.
It extends prior work on symmetric states to the operators and shows that the operator space follows the same structure as the state space.
arXiv Detail & Related papers (2024-02-26T06:23:39Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Annihilating Entanglement Between Cones [77.34726150561087]
We show that Lorentz cones are the only cones with a symmetric base for which a certain stronger version of the resilience property is satisfied.
Our proof exploits the symmetries of the Lorentz cones and applies two constructions resembling protocols for entanglement distillation.
arXiv Detail & Related papers (2021-10-22T15:02:39Z) - The Geometry of Time in Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We continue the study of nonrelativistic quantum gravity associated with a family of Ricci flow equations.
This topological gravity is of the cohomological type, and it exhibits an $cal N=2$ extended BRST symmetry.
We demonstrate a standard one-step BRST gauge-fixing of a theory whose fields are $g_ij$, $ni$ and $n$, and whose gauge symmetries consist of (i) the topological deformations of $g_ij$, and (ii) the ultralocal nonrelativistic limit of space
arXiv Detail & Related papers (2020-11-12T06:57:10Z) - The classification of symmetry protected topological phases of
one-dimensional fermion systems [0.0]
We introduce an index for symmetry protected topological (SPT) phases of infinite fermionic chains with an on-site symmetry given by a finite group $G$.
This index takes values in $mathbbZ times H1(G,mathbbZ_2) times H2(G, U(1)_mathfrakp)$ with a generalized Wall group law under stacking.
arXiv Detail & Related papers (2020-06-26T22:32:34Z) - Generalized string-nets for unitary fusion categories without
tetrahedral symmetry [77.34726150561087]
We present a general construction of the Levin-Wen model for arbitrary multiplicity-free unitary fusion categories.
We explicitly calculate the matrix elements of the Hamiltonian and, furthermore, show that it has the same properties as the original one.
arXiv Detail & Related papers (2020-04-15T12:21:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.