論文の概要: ContactHandover: Contact-Guided Robot-to-Human Object Handover
- arxiv url: http://arxiv.org/abs/2404.01402v2
- Date: Mon, 30 Sep 2024 07:34:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:00:48.720326
- Title: ContactHandover: Contact-Guided Robot-to-Human Object Handover
- Title(参考訳): ContactHandover: 接触誘導型ロボットとHumanオブジェクトのハンドオーバ
- Authors: Zixi Wang, Zeyi Liu, Nicolas Ouporov, Shuran Song,
- Abstract要約: 本稿では,接触誘導獲得フェーズと物体の伝達フェーズの2つのフェーズからなるヒューマンハンドオーバシステムを提案する。
把握フェーズでは、ContactHandoverは6-DoFロボットのグリップポーズと、オブジェクト上の人間の接触点の3D割当マップの両方を予測する。
配達段階では、人間の腕関節トルクと変位を最小化しつつ、人間に近い接触点を最大化してロボットエンドエフェクタポーズを算出する。
- 参考スコア(独自算出の注目度): 23.093164853009547
- License:
- Abstract: Robot-to-human object handover is an important step in many human robot collaboration tasks. A successful handover requires the robot to maintain a stable grasp on the object while making sure the human receives the object in a natural and easy-to-use manner. We propose ContactHandover, a robot to human handover system that consists of two phases: a contact-guided grasping phase and an object delivery phase. During the grasping phase, ContactHandover predicts both 6-DoF robot grasp poses and a 3D affordance map of human contact points on the object. The robot grasp poses are re-ranked by penalizing those that block human contact points, and the robot executes the highest ranking grasp. During the delivery phase, the robot end effector pose is computed by maximizing human contact points close to the human while minimizing the human arm joint torques and displacements. We evaluate our system on 27 diverse household objects and show that our system achieves better visibility and reachability of human contacts to the receiver compared to several baselines. More results can be found on https://clairezixiwang.github.io/ContactHandover.github.io
- Abstract(参考訳): ロボットと人間のオブジェクトのハンドオーバは多くのロボットの協調作業において重要なステップである。
ハンドオーバが成功した場合、ロボットは、人間が自然で使いやすい方法でオブジェクトを受け取ることを確実にしながら、オブジェクトの安定した把握を維持する必要がある。
本研究では,接触誘導獲得フェーズと物体の伝達フェーズの2つのフェーズからなるロボットと人間のハンドオーバシステムであるContactHandoverを提案する。
把握フェーズでは、ContactHandoverは6-DoFロボットのグリップポーズと、オブジェクト上の人間の接触点の3D割当マップの両方を予測する。
ロボットグリップポーズは、人間の接触点を塞ぐものを罰することで再ランク付けされ、ロボットは最高ランクのグリップを実行する。
配達段階では、人間の腕関節トルクと変位を最小化しつつ、人間に近い接触点を最大化してロボットエンドエフェクタポーズを算出する。
そこで本システムは,27種類の多種多様な対象物に対して評価を行い,複数のベースラインと比較して,人間との接触の視認性や到達性の向上を図っている。
さらなる結果はhttps://clairezixiwang.github.io/ContactHandover.github.ioで見ることができる。
関連論文リスト
- InteRACT: Transformer Models for Human Intent Prediction Conditioned on Robot Actions [7.574421886354134]
InteRACTアーキテクチャは、大規模な人間と人間のデータセットと小さな人間とロボットのデータセットの微細構造に関する条件付き意図予測モデルを事前訓練する。
実世界の協調的なロボット操作タスクについて評価し、条件付きモデルが様々な限界ベースラインよりも改善されていることを示す。
論文 参考訳(メタデータ) (2023-11-21T19:15:17Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0は、家庭環境における協調ロボットタスクを研究するためのシミュレーションプラットフォームである。
複雑な変形可能な体と外観と運動の多様性をモデル化する際の課題に対処する。
Human-in-the-loopインフラストラクチャは、マウス/キーボードまたはVRインターフェースを介してシミュレーションされたロボットとの実際のヒューマンインタラクションを可能にする。
論文 参考訳(メタデータ) (2023-10-19T17:29:17Z) - HandMeThat: Human-Robot Communication in Physical and Social
Environments [73.91355172754717]
HandMeThatは、物理的および社会的環境における命令理解とフォローの総合評価のためのベンチマークである。
HandMeThatには、人間とロボットの対話の1万エピソードが含まれている。
オフラインとオンラインの強化学習アルゴリズムはHandMeThatでは性能が良くないことを示す。
論文 参考訳(メタデータ) (2023-10-05T16:14:46Z) - ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
本稿では,ロボットの動きに対する新しいディープラーニング手法を提案する。
本手法では,新しいロボットへの翻訳を容易にする,人間とロボットのペアデータを必要としない。
我々のモデルは、効率と精度の観点から、人間とロボットの類似性に関する既存の研究よりも優れています。
論文 参考訳(メタデータ) (2023-09-11T08:55:04Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
本研究では,2つのロボットによるコミュニケーション意図による物体操作の知覚について検討する。
ロボットの動きを設計し,物体の搬送時に注意を喚起するか否かを判断した。
論文 参考訳(メタデータ) (2022-08-03T13:26:52Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
人間の快適さを考慮に入れた計画運動は、人間ロボットのハンドオーバプロセスの一部ではない。
本稿では,効率的なモデル予測制御フレームワークを用いてスムーズな動きを生成することを提案する。
ユーザ数名の多様なオブジェクトに対して,人間とロボットのハンドオーバ実験を行う。
論文 参考訳(メタデータ) (2022-03-31T23:08:20Z) - Robotic Telekinesis: Learning a Robotic Hand Imitator by Watching Humans
on Youtube [24.530131506065164]
我々は、人間なら誰でもロボットの手と腕を制御できるシステムを構築します。
ロボットは、人間のオペレーターを1台のRGBカメラで観察し、その動作をリアルタイムで模倣する。
我々はこのデータを利用して、人間の手を理解するシステムを訓練し、人間のビデオストリームをスムーズで、素早く、安全に、意味論的に誘導デモに類似したロボットのハンドアーム軌道に再ターゲティングする。
論文 参考訳(メタデータ) (2022-02-21T18:59:59Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
本稿では,REMPを用いた短時間キャリブレーションにより,ロボットが到達できると考える非専門家と地道とのギャップを効果的に埋めることができることを示す。
この校正手順は,ユーザ認識の向上だけでなく,人間とロボットのコラボレーションの効率化にも寄与することを示す。
論文 参考訳(メタデータ) (2021-03-06T09:14:30Z) - Human Grasp Classification for Reactive Human-to-Robot Handovers [50.91803283297065]
本稿では,ロボットが人間に遭遇するロボットのハンドオーバに対するアプローチを提案する。
対象物をさまざまな手形やポーズで保持する典型的な方法をカバーする,人間の把握データセットを収集する。
本稿では,検出した把握位置と手の位置に応じて人手から対象物を取り出す計画実行手法を提案する。
論文 参考訳(メタデータ) (2020-03-12T19:58:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。