論文の概要: TS-CausalNN: Learning Temporal Causal Relations from Non-linear Non-stationary Time Series Data
- arxiv url: http://arxiv.org/abs/2404.01466v1
- Date: Mon, 1 Apr 2024 20:33:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 20:37:09.835430
- Title: TS-CausalNN: Learning Temporal Causal Relations from Non-linear Non-stationary Time Series Data
- Title(参考訳): TS-CausalNN:非線形非定常時系列データによる時間的因果関係の学習
- Authors: Omar Faruque, Sahara Ali, Xue Zheng, Jianwu Wang,
- Abstract要約: 本稿では,時系列因果ニューラルネットワーク(TS-Causal Neural Network,TS-CausalNN)を提案する。
単純な並列設計に加えて、提案モデルの利点は、データの非定常性と非線形性を自然に扱うことである。
- 参考スコア(独自算出の注目度): 0.42156176975445486
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing availability and importance of time series data across various domains, including environmental science, epidemiology, and economics, has led to an increasing need for time-series causal discovery methods that can identify the intricate relationships in the non-stationary, non-linear, and often noisy real world data. However, the majority of current time series causal discovery methods assume stationarity and linear relations in data, making them infeasible for the task. Further, the recent deep learning-based methods rely on the traditional causal structure learning approaches making them computationally expensive. In this paper, we propose a Time-Series Causal Neural Network (TS-CausalNN) - a deep learning technique to discover contemporaneous and lagged causal relations simultaneously. Our proposed architecture comprises (i) convolutional blocks comprising parallel custom causal layers, (ii) acyclicity constraint, and (iii) optimization techniques using the augmented Lagrangian approach. In addition to the simple parallel design, an advantage of the proposed model is that it naturally handles the non-stationarity and non-linearity of the data. Through experiments on multiple synthetic and real world datasets, we demonstrate the empirical proficiency of our proposed approach as compared to several state-of-the-art methods. The inferred graphs for the real world dataset are in good agreement with the domain understanding.
- Abstract(参考訳): 環境科学、疫学、経済学など様々な分野における時系列データの可用性と重要性の増大により、非定常的、非線形でしばしばノイズの多い現実世界のデータにおける複雑な関係を識別できる時系列因果発見法の必要性が高まっている。
しかし、現在の時系列因果探索法の大部分は、データの定常性と線形関係を前提としており、そのタスクでは不可能である。
さらに,近年の深層学習手法は従来の因果構造学習手法に依存しており,計算コストが高い。
本稿では,時系列因果ニューラルネットワーク(TS-Causal Neural Network,TS-CausalNN)を提案する。
提案するアーキテクチャは
一 平行するカスタム因果層からなる畳み込みブロック
(二)非循環性制約、及び
3) 拡張ラグランジアンアプローチを用いた最適化手法
単純な並列設計に加えて、提案モデルの利点は、データの非定常性と非線形性を自然に扱うことである。
複数の合成および実世界のデータセットの実験を通して、提案手法の実証的習熟度を、いくつかの最先端手法と比較して示す。
実世界のデータセットの推論グラフは、ドメイン理解とよく一致している。
関連論文リスト
- Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
本研究では,相互依存データに対する問題に対して,学習可能な分散場を持つ幾何学的拡散モデルを提案する。
因果推論によって新たな学習目標が導出され、ドメイン間で無神経な相互依存の一般化可能なパターンを学習するためのモデルが導出される。
論文 参考訳(メタデータ) (2024-06-07T14:29:21Z) - Identifiable Feature Learning for Spatial Data with Nonlinear ICA [18.480534062833673]
本稿では,高次元依存構造を持つデータに自然に適用する潜在成分を用いた新しい非線形ICAフレームワークを提案する。
特に、計算効率を誘導する前に、ディープニューラルネットワークミキシング関数とTPの組み合わせを扱うための変分法を拡張する新しい学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-11-28T15:00:11Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
時系列異常検出のための相関対応時空間グラフ学習(CST-GL)を提案する。
CST-GLは、多変量時系列相関学習モジュールを介してペアの相関を明示的にキャプチャする。
新規な異常スコアリング成分をCST-GLにさらに統合し、純粋に教師なしの方法で異常の度合いを推定する。
論文 参考訳(メタデータ) (2023-07-17T11:04:27Z) - NODAGS-Flow: Nonlinear Cyclic Causal Structure Learning [8.20217860574125]
我々はNODAGS-Flowと呼ばれる介入データから非線形循環因果モデルを学習するための新しいフレームワークを提案する。
構造回復と予測性能に対する最先端手法と比較して,本手法による大幅な性能向上を示す。
論文 参考訳(メタデータ) (2023-01-04T23:28:18Z) - PIETS: Parallelised Irregularity Encoders for Forecasting with
Heterogeneous Time-Series [5.911865723926626]
マルチソースデータセットの不均一性と不規則性は時系列解析において重要な課題となる。
本研究では、異種時系列をモデル化するための新しいアーキテクチャ、PIETSを設計する。
PIETSは異種時間データを効果的にモデル化し、予測タスクにおける他の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-09-30T20:01:19Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - A Procedural World Generation Framework for Systematic Evaluation of
Continual Learning [2.599882743586164]
都会のシーンのフラグメントのみを描画するコンピュータグラフィックスシミュレーションフレームワークを提案する。
中心となるのは、適応可能な生成因子を持つモジュラーパラメトリック生成モデルである。
論文 参考訳(メタデータ) (2021-06-04T16:31:43Z) - Leveraging Pre-Images to Discover Nonlinear Relationships in
Multivariate Environments [0.0]
因果発見は、人工知能を用いた科学的発見において重要な機能を提供する。
多くの実世界の時間観測が互いに非線形に関連していることが判明した。
本手法は,観測が時間によって制限され,非線形に関連している場合に,最先端の因果発見法より優れていることを示す。
論文 参考訳(メタデータ) (2021-06-01T22:42:51Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
ダイナミカルシステムの研究において,連続時間における因果的発見を検討する。
本稿では,ニューラルネットワークを用いた因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-06T08:48:02Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z) - Discovering Nonlinear Relations with Minimum Predictive Information
Regularization [67.7764810514585]
本稿では,時系列から方向関係を推定する最小限の情報正規化手法を提案する。
本手法は, 合成データセットの非線形関係を学習するための他の手法よりも優れている。
論文 参考訳(メタデータ) (2020-01-07T04:28:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。