論文の概要: Patch Synthesis for Property Repair of Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2404.01642v2
- Date: Sat, 01 Feb 2025 02:49:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 16:05:23.831991
- Title: Patch Synthesis for Property Repair of Deep Neural Networks
- Title(参考訳): 深部ニューラルネットワークの特性修復のためのパッチ合成
- Authors: Zhiming Chi, Jianan Ma, Pengfei Yang, Cheng-Chao Huang, Renjue Li, Xiaowei Huang, Lijun Zhang,
- Abstract要約: 我々は、ディープニューラルネットワーク(DNN)のプロパティレベル修復のためのパッチベースの新しいアプローチであるPatchProを紹介する。
PatchProは、ネットワークの本来の性能を維持しながら、ロバストネス地区内のすべてのサンプルに特別な修復を提供する。
本手法は, 正当性検証とパッチモジュール割当機構を組み込んで, 敵攻撃に対する防御を可能にする。
- 参考スコア(独自算出の注目度): 15.580097790702508
- License:
- Abstract: Deep neural networks (DNNs) are prone to various dependability issues, such as adversarial attacks, which hinder their adoption in safety-critical domains. Recently, NN repair techniques have been proposed to address these issues while preserving original performance by locating and modifying guilty neurons and their parameters. However, existing repair approaches are often limited to specific data sets and do not provide theoretical guarantees for the effectiveness of the repairs. To address these limitations, we introduce PatchPro, a novel patch-based approach for property-level repair of DNNs, focusing on local robustness. The key idea behind PatchPro is to construct patch modules that, when integrated with the original network, provide specialized repairs for all samples within the robustness neighborhood while maintaining the network's original performance. Our method incorporates formal verification and a heuristic mechanism for allocating patch modules, enabling it to defend against adversarial attacks and generalize to other inputs. PatchPro demonstrates superior efficiency, scalability, and repair success rates compared to existing DNN repair methods, i.e., realizing provable property-level repair for 100% cases across multiple high-dimensional datasets.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、安全クリティカルドメインへの導入を妨げる敵攻撃など、さまざまな信頼性の問題に悩まされている。
近年, NN修復技術は, ニューロンとそのパラメータの特定・修正により, 元の性能を保ちながら, これらの問題に対処するために提案されている。
しかし、既存の補修手法は特定のデータセットに限られており、補修の有効性に関する理論的保証を提供していないことが多い。
これらの制約に対処するために、DNNのプロパティレベル修復のためのパッチベースの新しいアプローチであるPatchProを導入し、局所的な堅牢性に焦点を当てる。
PatchProの背景にある重要なアイデアは、元のネットワークと統合されたパッチモジュールを構築することであり、ネットワークの本来のパフォーマンスを維持しながら、ロバストネス地区内のすべてのサンプルを特別に修復することである。
本手法は,パッチモジュールのアロケートのための形式的検証とヒューリスティックな機構を取り入れ,敵攻撃を防御し,他の入力に一般化することを可能にする。
PatchProは、既存のDNN修復手法、すなわち複数の高次元データセットにまたがる100%のケースに対する証明可能なプロパティレベルの修復を実現する方法と比較して、効率、スケーラビリティ、修復成功率に優れる。
関連論文リスト
- Real-world Adversarial Defense against Patch Attacks based on Diffusion Model [34.86098237949215]
本稿では,DIFfusionをベースとした新しいDeFenderフレームワークであるDIFFenderを紹介する。
我々のアプローチの核心は、AAP(Adversarial Anomaly Perception)現象の発見である。
DIFFenderは、統一拡散モデルフレームワークにパッチのローカライゼーションと復元のタスクをシームレスに統合する。
論文 参考訳(メタデータ) (2024-09-14T10:38:35Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Improving the Robustness of Object Detection and Classification AI models against Adversarial Patch Attacks [2.963101656293054]
我々は攻撃手法を解析し、堅牢な防御手法を提案する。
我々は,物体形状,テクスチャ,位置を利用する逆パッチ攻撃を用いて,モデル信頼度を20%以上下げることに成功した。
敵攻撃にも拘わらず,本手法はモデルレジリエンスを著しく向上させ,高精度かつ信頼性の高いローカライゼーションを実現している。
論文 参考訳(メタデータ) (2024-03-04T13:32:48Z) - FACADE: A Framework for Adversarial Circuit Anomaly Detection and
Evaluation [9.025997629442896]
FACADEは、ディープニューラルネットワークにおける教師なしの機械的異常検出のために設計されている。
我々のアプローチは、モデルの堅牢性を改善し、スケーラブルなモデル監視を強化し、現実のデプロイメント環境で有望なアプリケーションを実証することを目指している。
論文 参考訳(メタデータ) (2023-07-20T04:00:37Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
入力のノルム有界対向摂動に対する強化学習の証明可能な堅牢性について検討する。
我々は、スムーズなポリシーによって得られる全報酬が、入力の摂動のノルムバウンドな逆数の下で一定の閾値以下に収まらないことを保証した証明書を生成する。
論文 参考訳(メタデータ) (2021-06-21T21:42:08Z) - A Data Augmentation-based Defense Method Against Adversarial Attacks in
Neural Networks [7.943024117353317]
そこで本研究では,実生活制約に適合した完全ホワイトボックス攻撃を効果的に無効化する軽量防衛手法を開発した。
我々のモデルは、50発のBPDAによる高度な適応攻撃に耐えることができ、攻撃成功率をほぼゼロに抑えながら、目標モデルが約80%の精度を維持するのに役立ちます。
論文 参考訳(メタデータ) (2020-07-30T08:06:53Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。