A Closer Look at Spatial-Slice Features Learning for COVID-19 Detection
- URL: http://arxiv.org/abs/2404.01643v2
- Date: Sat, 20 Apr 2024 07:41:32 GMT
- Title: A Closer Look at Spatial-Slice Features Learning for COVID-19 Detection
- Authors: Chih-Chung Hsu, Chia-Ming Lee, Yang Fan Chiang, Yi-Shiuan Chou, Chih-Yu Jiang, Shen-Chieh Tai, Chi-Han Tsai,
- Abstract summary: We introduce an enhanced Spatial-Slice Feature Learning (SSFL++) framework specifically designed for CT scan.
It aim to filter out a OOD data within whole CT scan, enabling our to select crucial spatial-slice for analysis by reducing 70% redundancy totally.
Experiments demonstrate the promising performance of our model using a simple EfficientNet-2D (E2D) model, even with only 1% of the training data.
- Score: 8.215897530386343
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional Computed Tomography (CT) imaging recognition faces two significant challenges: (1) There is often considerable variability in the resolution and size of each CT scan, necessitating strict requirements for the input size and adaptability of models. (2) CT-scan contains large number of out-of-distribution (OOD) slices. The crucial features may only be present in specific spatial regions and slices of the entire CT scan. How can we effectively figure out where these are located? To deal with this, we introduce an enhanced Spatial-Slice Feature Learning (SSFL++) framework specifically designed for CT scan. It aim to filter out a OOD data within whole CT scan, enabling our to select crucial spatial-slice for analysis by reducing 70% redundancy totally. Meanwhile, we proposed Kernel-Density-based slice Sampling (KDS) method to improve the stability when training and inference stage, therefore speeding up the rate of convergence and boosting performance. As a result, the experiments demonstrate the promising performance of our model using a simple EfficientNet-2D (E2D) model, even with only 1% of the training data. The efficacy of our approach has been validated on the COVID-19-CT-DB datasets provided by the DEF-AI-MIA workshop, in conjunction with CVPR 2024. Our source code is available at https://github.com/ming053l/E2D
Related papers
- Inter-slice Super-resolution of Magnetic Resonance Images by Pre-training and Self-supervised Fine-tuning [49.197385954021456]
In clinical practice, 2D magnetic resonance (MR) sequences are widely adopted. While individual 2D slices can be stacked to form a 3D volume, the relatively large slice spacing can pose challenges for visualization and subsequent analysis tasks.
To reduce slice spacing, deep-learning-based super-resolution techniques are widely investigated.
Most current solutions require a substantial number of paired high-resolution and low-resolution images for supervised training, which are typically unavailable in real-world scenarios.
arXiv Detail & Related papers (2024-06-10T02:20:26Z) - Simple 2D Convolutional Neural Network-based Approach for COVID-19 Detection [8.215897530386343]
This study explores the use of deep learning techniques for analyzing lung Computed Tomography (CT) images.
We propose an advanced Spatial-Slice Feature Learning (SSFL++) framework specifically tailored for CT scans.
It aims to filter out out out-of-distribution (OOD) data within the entire CT scan, allowing us to select essential spatial-slice features for analysis by reducing data redundancy by 70%.
arXiv Detail & Related papers (2024-03-17T14:34:51Z) - Label-efficient Multi-organ Segmentation Method with Diffusion Model [6.413416851085592]
We present a label-efficient learning approach using a pre-trained diffusion model for multi-organ segmentation tasks in CT images.
Our method achieves competitive multi-organ segmentation performance compared to state-of-the-art methods on the FLARE 2022 dataset.
arXiv Detail & Related papers (2024-02-23T09:25:57Z) - Semantic Segmentation in Satellite Hyperspectral Imagery by Deep Learning [54.094272065609815]
We propose a lightweight 1D-CNN model, 1D-Justo-LiuNet, which outperforms state-of-the-art models in the hypespectral domain.
1D-Justo-LiuNet achieves the highest accuracy (0.93) with the smallest model size (4,563 parameters) among all tested models.
arXiv Detail & Related papers (2023-10-24T21:57:59Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
Tuberculosis (TB) is a major global health threat, causing millions of deaths annually.
Computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data.
We establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas.
This dataset enables the training of sophisticated detectors for high-quality CTD.
arXiv Detail & Related papers (2023-07-06T08:27:48Z) - Strong Baseline and Bag of Tricks for COVID-19 Detection of CT Scans [2.696776905220987]
Traditional deep learning frameworks encounter compatibility issues due to variations in slice numbers and resolutions in CT images.
We propose a novel slice selection method for each CT dataset to address this limitation.
In addition to the aforementioned methods, we explore various high-performance classification models, ultimately achieving promising results.
arXiv Detail & Related papers (2023-03-15T09:52:28Z) - Spatiotemporal Feature Learning Based on Two-Step LSTM and Transformer
for CT Scans [2.3682456328966115]
We propose a novel, effective, two-step-wise approach to tickle this issue for COVID-19 symptom classification thoroughly.
First, the semantic feature embedding of each slice for a CT scan is extracted by conventional backbone networks.
Then, we proposed a long short-term memory (LSTM) and Transformer-based sub-network to deal with temporal feature learning.
arXiv Detail & Related papers (2022-07-04T16:59:05Z) - One-Shot Medical Landmark Detection [11.213814977894314]
We propose a novel framework named Cascade Comparing to Detect (CC2D) for one-shot landmark detection.
CC2D consists of two stages: 1) Self-supervised learning (CC2D-SSL) and 2) Training with pseudo-labels (CC2D-TPL)
The effectiveness of CC2D is evaluated on a widely-used public dataset of cephalometric landmark detection, which achieves a competitive detection accuracy of 81.01% within 4.0mm.
arXiv Detail & Related papers (2021-03-08T03:16:53Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.