論文の概要: A Methodology for Improving Accuracy of Embedded Spiking Neural Networks through Kernel Size Scaling
- arxiv url: http://arxiv.org/abs/2404.01685v2
- Date: Thu, 4 Apr 2024 00:36:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 11:20:41.956101
- Title: A Methodology for Improving Accuracy of Embedded Spiking Neural Networks through Kernel Size Scaling
- Title(参考訳): カーネルサイズスケーリングによる埋め込みスパイクニューラルネットワークの精度向上手法
- Authors: Rachmad Vidya Wicaksana Putra, Muhammad Shafique,
- Abstract要約: Spiking Neural Networks(SNN)は、機械学習ベースのアプリケーションに対して、超低電力/エネルギー消費を提供する。
現在、ほとんどのSNNアーキテクチャはより高精度なモデルサイズを必要とする。
本稿では,カーネルサイズスケーリングによるSNNの精度向上手法を提案する。
- 参考スコア(独自算出の注目度): 6.006032394972252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking Neural Networks (SNNs) can offer ultra low power/ energy consumption for machine learning-based applications due to their sparse spike-based operations. Currently, most of the SNN architectures need a significantly larger model size to achieve higher accuracy, which is not suitable for resource-constrained embedded applications. Therefore, developing SNNs that can achieve high accuracy with acceptable memory footprint is highly needed. Toward this, we propose a novel methodology that improves the accuracy of SNNs through kernel size scaling. Its key steps include investigating the impact of different kernel sizes on the accuracy, devising new sets of kernel sizes, generating SNN architectures based on the selected kernel sizes, and analyzing the accuracy-memory trade-offs for SNN model selection. The experimental results show that our methodology achieves higher accuracy than state-of-the-art (93.24% accuracy for CIFAR10 and 70.84% accuracy for CIFAR100) with less than 10M parameters and up to 3.45x speed-up of searching time, thereby making it suitable for embedded applications.
- Abstract(参考訳): Spiking Neural Networks (SNN) は、スパーススパイクベースの操作のため、機械学習ベースのアプリケーションに対して、超低電力/エネルギー消費を提供することができる。
現在、ほとんどのSNNアーキテクチャは、より精度の高いモデルサイズを必要とするが、リソース制約のある組み込みアプリケーションには適さない。
そのため,メモリフットプリントを許容できる精度の高いSNNの開発が不可欠である。
そこで本研究では,カーネルサイズスケーリングによるSNNの精度向上手法を提案する。
その重要なステップは、異なるカーネルサイズが精度に与える影響を調査し、新しいカーネルサイズを考案し、選択したカーネルサイズに基づいてSNNアーキテクチャを生成し、SNNモデル選択の精度-メモリトレードオフを分析することである。
実験の結果,CIFAR10では93.24%,CIFAR100では70.84%,探索時間の最大3.45倍の高速化を実現し,組込みアプリケーションに適していることがわかった。
関連論文リスト
- Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - High-speed Low-consumption sEMG-based Transient-state micro-Gesture
Recognition [6.649481653007372]
提案されたSNNの精度はそれぞれ83.85%と93.52%である。
この手法は、高精度、高速、低消費電力のマイクロジェスチャー認識タスクに使用できる。
論文 参考訳(メタデータ) (2024-03-04T08:59:12Z) - LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal Compressive Network Search and Joint Optimization [48.41286573672824]
スパイキングニューラルネットワーク(SNN)は人間の脳の情報処理機構を模倣し、エネルギー効率が高い。
本稿では,空間圧縮と時間圧縮の両方を自動ネットワーク設計プロセスに組み込むLitE-SNNという新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-26T05:23:11Z) - Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
ターゲットハードウェアがコンピューティングの端に達すると、スパイキングニューラルネットワーク(SNN)が実用的な選択となる。
我々は、近似誤差を伝播するそのようなモデルの能力を生かした探索手法を開発するために、インターヴァル算術(IA)モデルを用いる。
論文 参考訳(メタデータ) (2022-11-22T15:08:05Z) - Ultra-low Latency Adaptive Local Binary Spiking Neural Network with
Accuracy Loss Estimator [4.554628904670269]
精度損失推定器を用いた超低レイテンシ適応型局所二元スパイクニューラルネットワーク(ALBSNN)を提案する。
実験の結果,ネットワークの精度を損なうことなく,ストレージ容量を20%以上削減できることがわかった。
論文 参考訳(メタデータ) (2022-07-31T09:03:57Z) - tinySNN: Towards Memory- and Energy-Efficient Spiking Neural Networks [14.916996986290902]
スパイキングニューラルネットワーク(SNN)モデルは、高い精度を提供できるため、一般的に好適である。
しかし、資源とエネルギーを制約した組込みプラットフォームにそのようなモデルを適用することは非効率である。
本稿では,SNN処理のメモリおよびエネルギー要求を最適化する小型SNNフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-17T09:40:40Z) - Edge Inference with Fully Differentiable Quantized Mixed Precision
Neural Networks [1.131071436917293]
パラメータと演算をビット精度の低いものに量子化することで、ニューラルネットワークの推論にかなりのメモリとエネルギーを節約できる。
本稿では,エッジ計算を対象とする混合精度畳み込みニューラルネットワーク(CNN)の量子化手法を提案する。
論文 参考訳(メタデータ) (2022-06-15T18:11:37Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNN) は、BNNの圧縮と高速化に適した新しいタイプのバイナリ量子化設計である。
SNNは、微細な畳み込みカーネル空間におけるバイナリ量子化を利用するカーネル対応最適化フレームワークで訓練されている。
ビジュアル認識ベンチマークの実験とFPGA上でのハードウェア展開は、SNNの大きな可能性を検証する。
論文 参考訳(メタデータ) (2021-10-18T11:30:29Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - NL-CNN: A Resources-Constrained Deep Learning Model based on Nonlinear
Convolution [0.0]
NL-CNNと略される新しい畳み込みニューラルネットワークモデルが提案され、非線型畳み込みは畳み込み+非線形性層のカスケードでエミュレートされる。
いくつかの広く知られているデータセットのパフォーマンス評価が提供され、いくつかの関連する特徴を示している。
論文 参考訳(メタデータ) (2021-01-30T13:38:42Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
我々は,MS-RANAS(Multi-Scale Resource-Aware Neural Architecture Search)を提案する。
我々は,検索コストの削減を図るために,ワンショットのアーキテクチャ探索手法を採用した。
我々は精度-速度トレードオフの観点から最先端の結果を得る。
論文 参考訳(メタデータ) (2020-09-29T11:56:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。