Retrieval-Augmented Generation Meets Data-Driven Tabula Rasa Approach for Temporal Knowledge Graph Forecasting
- URL: http://arxiv.org/abs/2408.13273v1
- Date: Sun, 18 Aug 2024 11:52:24 GMT
- Title: Retrieval-Augmented Generation Meets Data-Driven Tabula Rasa Approach for Temporal Knowledge Graph Forecasting
- Authors: Geethan Sannidhi, Sagar Srinivas Sakhinana, Venkataramana Runkana,
- Abstract summary: sLA-tKGF is a small-scale language assistant for temporal Knowledge Graph (tKG) forecasting.
Our framework constructs knowledge-infused prompts with historical data from tKGs and web search results.
It reduces hallucinations and mitigates distributional shift challenges through comprehending changing trends over time.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Pre-trained large language models (PLLMs) like OpenAI ChatGPT and Google Gemini face challenges such as inaccurate factual recall, hallucinations, biases, and future data leakage for temporal Knowledge Graph (tKG) forecasting. To address these issues, we introduce sLA-tKGF (small-scale language assistant for tKG forecasting), which utilizes Retrieval-Augmented Generation (RAG) aided, custom-trained small-scale language models through a tabula rasa approach from scratch for effective tKG forecasting. Our framework constructs knowledge-infused prompts with relevant historical data from tKGs, web search results, and PLLMs-generated textual descriptions to understand historical entity relationships prior to the target time. It leverages these external knowledge-infused prompts for deeper understanding and reasoning of context-specific semantic and temporal information to zero-shot prompt small-scale language models for more accurate predictions of future events within tKGs. It reduces hallucinations and mitigates distributional shift challenges through comprehending changing trends over time. As a result, it enables more accurate and contextually grounded forecasts of future events while minimizing computational demands. Rigorous empirical studies demonstrate our framework robustness, scalability, and state-of-the-art (SOTA) performance on benchmark datasets with interpretable and trustworthy tKG forecasting.
Related papers
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - XForecast: Evaluating Natural Language Explanations for Time Series Forecasting [72.57427992446698]
Time series forecasting aids decision-making, especially for stakeholders who rely on accurate predictions.
Traditional explainable AI (XAI) methods, which underline feature or temporal importance, often require expert knowledge.
evaluating forecast NLEs is difficult due to the complex causal relationships in time series data.
arXiv Detail & Related papers (2024-10-18T05:16:39Z) - Learning Granularity Representation for Temporal Knowledge Graph Completion [2.689675451882683]
Temporal Knowledge Graphs (TKGs) incorporate temporal information to reflect the dynamic structural knowledge and evolutionary patterns of real-world facts.
This paper proposes textbfLearning textbfGranularity textbfRepresentation (termed $mathsfLGRe$) for TKG completion.
It comprises two main components: Granularity Learning (GRL) and Adaptive Granularity Balancing (AGB)
arXiv Detail & Related papers (2024-08-27T08:19:34Z) - Large Language Models-guided Dynamic Adaptation for Temporal Knowledge Graph Reasoning [87.10396098919013]
Large Language Models (LLMs) have demonstrated extensive knowledge and remarkable proficiency in temporal reasoning.
We propose a Large Language Models-guided Dynamic Adaptation (LLM-DA) method for reasoning on Temporal Knowledge Graphs.
LLM-DA harnesses the capabilities of LLMs to analyze historical data and extract temporal logical rules.
arXiv Detail & Related papers (2024-05-23T04:54:37Z) - Selective Temporal Knowledge Graph Reasoning [70.11788354442218]
Temporal Knowledge Graph (TKG) aims to predict future facts based on given historical ones.
Existing TKG reasoning models are unable to abstain from predictions they are uncertain.
We propose an abstention mechanism for TKG reasoning, which helps the existing models make selective, instead of indiscriminate, predictions.
arXiv Detail & Related papers (2024-04-02T06:56:21Z) - Prompt Learning on Temporal Interaction Graphs [25.28535762085367]
Temporal Interaction Graphs (TIGs) are widely utilized to represent real-world systems.
TIG models are facing tough gaps between the pre-training and downstream predictions in their pre-train, predict'' training paradigm.
We introduce Temporal Interaction GraphPrompting (TIGPrompt), a versatile framework that seamlessly integrates with TIG models.
arXiv Detail & Related papers (2024-02-09T11:06:20Z) - Learning Multi-graph Structure for Temporal Knowledge Graph Reasoning [3.3571415078869955]
This paper proposes an innovative reasoning approach that focuses on Learning Multi-graph Structure (LMS)
LMS incorporates an adaptive gate for merging entity representations both along and across timestamps effectively.
It also integrates timestamp semantics into graph attention calculations and time-aware decoders.
arXiv Detail & Related papers (2023-12-04T08:23:09Z) - GenTKG: Generative Forecasting on Temporal Knowledge Graph with Large Language Models [35.594662986581746]
Large language models (LLMs) have ignited interest in the temporal knowledge graph (tKG) domain, where conventional embedding-based and rule-based methods dominate.
We propose a novel retrieval-augmented generation framework named GenTKG combining a temporal logical rule-based retrieval strategy and few-shot parameter-efficient instruction tuning.
Experiments have shown that GenTKG outperforms conventional methods of temporal relational forecasting with low computation resources.
arXiv Detail & Related papers (2023-10-11T18:27:12Z) - Exploring the Limits of Historical Information for Temporal Knowledge
Graph Extrapolation [59.417443739208146]
We propose a new event forecasting model based on a novel training framework of historical contrastive learning.
CENET learns both the historical and non-historical dependency to distinguish the most potential entities.
We evaluate our proposed model on five benchmark graphs.
arXiv Detail & Related papers (2023-08-29T03:26:38Z) - Temporal Knowledge Graph Forecasting Without Knowledge Using In-Context
Learning [23.971206470486468]
We present a framework that converts relevant historical facts into prompts and generates ranked predictions using token probabilities.
Surprisingly, we observe that LLMs, out-of-the-box, perform on par with state-of-the-art TKG models.
We also discover that using numerical indices instead of entity/relation names, does not significantly affect the performance.
arXiv Detail & Related papers (2023-05-17T23:50:28Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.