論文の概要: MotionChain: Conversational Motion Controllers via Multimodal Prompts
- arxiv url: http://arxiv.org/abs/2404.01700v1
- Date: Tue, 2 Apr 2024 07:09:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 17:38:25.638181
- Title: MotionChain: Conversational Motion Controllers via Multimodal Prompts
- Title(参考訳): MotionChain:マルチモーダルプロンプトによる会話型モーションコントローラ
- Authors: Biao Jiang, Xin Chen, Chi Zhang, Fukun Yin, Zhuoyuan Li, Gang YU, Jiayuan Fan,
- Abstract要約: 我々は,マルチモーダルプロンプトによる連続的,長期的人間の動作を生成する対話型ヒューマンモーションコントローラであるMotionChainを紹介する。
大規模言語、視覚言語、視覚運動データを活用することで、MotionChainは、マルチターン会話で各命令を理解し、それに続く人間の動きを生成する。
- 参考スコア(独自算出の注目度): 25.181069337771127
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advancements in language models have demonstrated their adeptness in conducting multi-turn dialogues and retaining conversational context. However, this proficiency remains largely unexplored in other multimodal generative models, particularly in human motion models. By integrating multi-turn conversations in controlling continuous virtual human movements, generative human motion models can achieve an intuitive and step-by-step process of human task execution for humanoid robotics, game agents, or other embodied systems. In this work, we present MotionChain, a conversational human motion controller to generate continuous and long-term human motion through multimodal prompts. Specifically, MotionChain consists of multi-modal tokenizers that transform various data types such as text, image, and motion, into discrete tokens, coupled with a Vision-Motion-aware Language model. By leveraging large-scale language, vision-language, and vision-motion data to assist motion-related generation tasks, MotionChain thus comprehends each instruction in multi-turn conversation and generates human motions followed by these prompts. Extensive experiments validate the efficacy of MotionChain, demonstrating state-of-the-art performance in conversational motion generation, as well as more intuitive manners of controlling and interacting with virtual humans.
- Abstract(参考訳): 言語モデルの最近の進歩は、多ターン対話の実施と会話の文脈の維持において、その適応性を実証している。
しかしながら、この習熟度は他のマルチモーダル生成モデル、特にヒトの運動モデルにおいてほとんど探索されていない。
連続的な仮想人間の動きを制御するために多ターン会話を統合することで、人型ロボット、ゲームエージェント、または他の具体的システムに対する人間のタスク実行の直感的でステップバイステップのプロセスを実現することができる。
本研究では,マルチモーダルプロンプトによる人間の連続的・長期的動作を生成する対話型モーションコントローラであるMotionChainを紹介する。
具体的には、MotionChainは、テキスト、画像、モーションなどのさまざまなデータ型を個別のトークンに変換するマルチモーダルトークンライザと、Vision-Motion-Aware Languageモデルで構成される。
そこでMotionChainは、大規模言語、視覚言語、視覚運動データを活用して、動作関連生成タスクを支援することにより、マルチターン会話における各命令を理解し、それに続く人間の動作を生成する。
広範囲にわたる実験は、モーションチェインの有効性を検証し、会話の動作生成における最先端のパフォーマンスを実証し、仮想人間と制御し相互作用するより直感的な方法を示した。
関連論文リスト
- EMOTION: Expressive Motion Sequence Generation for Humanoid Robots with In-Context Learning [10.266351600604612]
本稿では,ヒューマノイドロボットにおける表現型動き列を生成するためのEMOTIONというフレームワークを提案する。
本研究では,EMOTIONが生成する動作の自然性と理解性を比較したオンラインユーザ研究を行い,その人間フィードバックバージョンであるEMOTION++について述べる。
論文 参考訳(メタデータ) (2024-10-30T17:22:45Z) - Sitcom-Crafter: A Plot-Driven Human Motion Generation System in 3D Scenes [83.55301458112672]
Sitcom-Crafterは3D空間における人間のモーション生成システムである。
機能生成モジュールの中心は、我々の新しい3Dシーン対応ヒューマン・ヒューマン・インタラクションモジュールである。
拡張モジュールは、コマンド生成のためのプロット理解、異なるモーションタイプのシームレスな統合のためのモーション同期を含む。
論文 参考訳(メタデータ) (2024-10-14T17:56:19Z) - Versatile Motion Language Models for Multi-Turn Interactive Agents [28.736843383405603]
本稿では,言語と運動の両モードを統合したVersatile Interactive Motion言語モデルを提案する。
動作関連タスク,テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声
論文 参考訳(メタデータ) (2024-10-08T02:23:53Z) - MotionLLM: Understanding Human Behaviors from Human Motions and Videos [40.132643319573205]
この研究は、人間の行動理解の多様性(ビデオと運動のモダリティ)の領域を掘り下げる。
我々は、人間の動作理解、キャプション、推論のためのフレームワークであるMotionLLMを紹介する。
論文 参考訳(メタデータ) (2024-05-30T17:59:50Z) - Motion-Agent: A Conversational Framework for Human Motion Generation with LLMs [67.59291068131438]
Motion-Agentは、一般的な人間の動きの生成、編集、理解のために設計された会話フレームワークである。
Motion-Agentはオープンソースの事前学習言語モデルを使用して、モーションとテキストのギャップを埋める生成エージェントであるMotionLLMを開発した。
論文 参考訳(メタデータ) (2024-05-27T09:57:51Z) - ConvoFusion: Multi-Modal Conversational Diffusion for Co-Speech Gesture Synthesis [50.69464138626748]
マルチモーダルなジェスチャー合成のための拡散に基づくアプローチであるConvoFusionを提案する。
提案手法は,条件の異なる条件が与える影響をユーザが調節できる2つの誘導目標を提案する。
本手法は,モノログジェスチャを生成するか,会話ジェスチャを生成するかの訓練が可能である。
論文 参考訳(メタデータ) (2024-03-26T17:59:52Z) - MotionGPT: Human Motion as a Foreign Language [47.21648303282788]
人間の動きは人間の言語に似た意味的な結合を示し、しばしば身体言語の一種として認識される。
大規模モーションモデルで言語データを融合することにより、動き言語事前学習は、動きに関連したタスクのパフォーマンスを向上させることができる。
我々は,複数の動作関連タスクを処理するために,統一的で汎用的でユーザフレンドリな動作言語モデルであるMotionGPTを提案する。
論文 参考訳(メタデータ) (2023-06-26T15:53:02Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: 命令型ニューラル表現を用いたタスク指向型ヒューマンオブジェクトインタラクション生成
本手法は時間座標のみでパラメータ化される連続運動を生成する。
この研究は、一般的なヒューマン・シーンの相互作用シミュレーションに向けて一歩前進する。
論文 参考訳(メタデータ) (2023-03-23T09:31:56Z) - Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion [89.01668641930206]
本稿では,対話における対話コミュニケーションをモデル化するための枠組みを提案する。
我々は、対応するリスナー動作の複数の可能性を自動回帰的に出力する。
本手法は,非言語的ダイアド相互作用の多モーダルおよび非決定論的性質を有機的に捕捉する。
論文 参考訳(メタデータ) (2022-04-18T17:58:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。