論文の概要: Contextual Embedding Learning to Enhance 2D Networks for Volumetric Image Segmentation
- arxiv url: http://arxiv.org/abs/2404.01723v2
- Date: Sat, 18 May 2024 03:54:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 22:41:01.998279
- Title: Contextual Embedding Learning to Enhance 2D Networks for Volumetric Image Segmentation
- Title(参考訳): ボリューム画像分割のための2次元ネットワーク構築のためのコンテキスト埋め込み学習
- Authors: Zhuoyuan Wang, Dong Sun, Xiangyun Zeng, Ruodai Wu, Yi Wang,
- Abstract要約: 2次元畳み込みニューラルネットワーク(CNN)は、体積データの空間的相関をほとんど利用できない。
本研究では,空間情報を適切にキャプチャする2次元CNNを実現するためのコンテキスト埋め込み学習手法を提案する。
提案手法では,学習した埋め込みとスライスワイズマッチングをソフトキューとして活用し,ネットワークを誘導する。
- 参考スコア(独自算出の注目度): 5.995633685952995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The segmentation of organs in volumetric medical images plays an important role in computer-aided diagnosis and treatment/surgery planning. Conventional 2D convolutional neural networks (CNNs) can hardly exploit the spatial correlation of volumetric data. Current 3D CNNs have the advantage to extract more powerful volumetric representations but they usually suffer from occupying excessive memory and computation nevertheless. In this study we aim to enhance the 2D networks with contextual information for better volumetric image segmentation. Accordingly, we propose a contextual embedding learning approach to facilitate 2D CNNs capturing spatial information properly. Our approach leverages the learned embedding and the slice-wisely neighboring matching as a soft cue to guide the network. In such a way, the contextual information can be transferred slice-by-slice thus boosting the volumetric representation of the network. Experiments on challenging prostate MRI dataset (PROMISE12) and abdominal CT dataset (CHAOS) show that our contextual embedding learning can effectively leverage the inter-slice context and improve segmentation performance. The proposed approach is a plug-and-play, and memory-efficient solution to enhance the 2D networks for volumetric segmentation. Our code is publicly available at https://github.com/JuliusWang-7/CE_Block.
- Abstract(参考訳): ボリューム医療画像における臓器の分節化は,コンピュータ支援による診断・治療・手術計画において重要な役割を担っている。
従来の2次元畳み込みニューラルネットワーク(CNN)は、体積データの空間的相関をほとんど利用できない。
現在の3D CNNは、より強力なボリューム表現を抽出する利点があるが、通常は過剰なメモリと計算を占有する。
本研究では,2次元ネットワークを文脈情報で拡張し,ボリューム画像のセグメンテーションを改善することを目的とする。
そこで本稿では,空間情報を適切に捉えた2次元CNNを容易にするためのコンテキスト埋め込み学習手法を提案する。
提案手法では,学習した埋め込みとスライスワイズマッチングをソフトキューとして活用し,ネットワークを誘導する。
このように、コンテキスト情報をスライス・バイ・スライスで転送することで、ネットワークの容積表現が向上する。
前立腺MRIデータセット(PROMISE12)と腹部CTデータセット(CHAOS)の実験は、文脈埋め込み学習がスライス間コンテキストを効果的に活用し、セグメンテーション性能を向上させることを示す。
提案手法は、ボリュームセグメンテーションのための2次元ネットワークを強化するための、プラグアンドプレイとメモリ効率のソリューションである。
私たちのコードはhttps://github.com/JuliusWang-7/CE_Block.comで公開されています。
関連論文リスト
- Self-supervised learning via inter-modal reconstruction and feature
projection networks for label-efficient 3D-to-2D segmentation [4.5206601127476445]
ラベル効率のよい3D-to-2Dセグメンテーションのための新しい畳み込みニューラルネットワーク(CNN)と自己教師付き学習(SSL)手法を提案する。
異なるデータセットの結果から、提案されたCNNは、ラベル付きデータに制限のあるシナリオにおいて、Diceスコアの最大8%まで、アートの状態を著しく改善することが示された。
論文 参考訳(メタデータ) (2023-07-06T14:16:25Z) - Dual Multi-scale Mean Teacher Network for Semi-supervised Infection
Segmentation in Chest CT Volume for COVID-19 [76.51091445670596]
CT(Computed tomography)データから肺感染症を自動的に検出することは、COVID-19と戦う上で重要な役割を担っている。
現在の新型コロナウイルス感染症のセグメンテーションのほとんどは、主に3Dシーケンシャルな制約を欠いた2D CT画像に依存している。
既存の3次元CTセグメンテーション法では,3次元ボリュームにおける複数レベルの受容場サイズを達成できない単一スケールの表現に焦点が当てられている。
論文 参考訳(メタデータ) (2022-11-10T13:11:21Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Point-Unet: A Context-aware Point-based Neural Network for Volumetric
Segmentation [18.81644604997336]
本稿では,3次元点雲による深層学習の効率をボリュームセグメンテーションに組み込む新しい手法であるPoint-Unetを提案する。
私たちのキーとなるアイデアは、まず注意確率マップを学習することで、ボリュームに対する関心領域を予測することです。
異なるメトリクスに関する包括的なベンチマークでは、私たちのコンテキスト認識のPoint-UnetがSOTAのボクセルベースネットワークより優れていることが示されている。
論文 参考訳(メタデータ) (2022-03-16T22:02:08Z) - Shape-consistent Generative Adversarial Networks for multi-modal Medical
segmentation maps [10.781866671930857]
極めて限られたデータセットに対して合成心容積を用いたセグメンテーションネットワークを提案する。
提案手法は,モダリティ間で情報を共有するための3次元クロスモダリティ生成対向ネットワークに基づいている。
空間拡張を用いた場合,小さなデータセット上でのセグメンテーションの改善が可能であることを示す。
論文 参考訳(メタデータ) (2022-01-24T13:57:31Z) - Multi-Slice Dense-Sparse Learning for Efficient Liver and Tumor
Segmentation [4.150096314396549]
ディープ畳み込みニューラルネットワーク(DCNN)は2次元および3次元の医用画像セグメンテーションにおいて大きな成功を収めている。
そこで我々は,DCNNを正規化するための入力として,密接な隣接スライスと疎隣接スライスを抽出するデータの観点から,新しい密集スプリストレーニングフローを提案する。
また、ネットワークの観点から2.5Dの軽量nnU-Netを設計し、その効率を向上させるために深度的に分離可能な畳み込みを採用する。
論文 参考訳(メタデータ) (2021-08-15T15:29:48Z) - Residual Moment Loss for Medical Image Segmentation [56.72261489147506]
位置情報は,対象物体の多様体構造を捉えた深層学習モデルに有効であることが証明された。
既存のほとんどの手法は、ネットワークが学習するために、位置情報を暗黙的にエンコードする。
セグメント化対象の位置情報を明示的に埋め込むために,新しい損失関数,すなわち残差モーメント(RM)損失を提案する。
論文 参考訳(メタデータ) (2021-06-27T09:31:49Z) - Learning Hybrid Representations for Automatic 3D Vessel Centerline
Extraction [57.74609918453932]
3次元医用画像からの血管の自動抽出は血管疾患の診断に不可欠である。
既存の方法では、3次元画像からそのような細い管状構造を分割する際に、抽出された容器の不連続に悩まされることがある。
抽出された船舶の連続性を維持するためには、地球的幾何学を考慮に入れる必要があると論じる。
この課題を解決するためのハイブリッド表現学習手法を提案します。
論文 参考訳(メタデータ) (2020-12-14T05:22:49Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
本研究では、畳み込みニューラルネットワークによるセグメンテーションを改善するために、オートエンコーダ抽出機能の可能性を検討する。
コンボリューション・オートエンコーダを用いてラベルのないデータから特徴を抽出し,CT画像における3次元肝セグメンテーションの目標タスクを実行するために,マルチスケールの完全畳み込みCNNを用いた。
論文 参考訳(メタデータ) (2020-03-17T20:20:43Z) - Curriculum By Smoothing [52.08553521577014]
畳み込みニューラルネットワーク(CNN)は、画像分類、検出、セグメンテーションなどのコンピュータビジョンタスクにおいて顕著な性能を示している。
アンチエイリアスフィルタやローパスフィルタを用いてCNNの機能埋め込みを円滑化するエレガントなカリキュラムベースのスキームを提案する。
トレーニング中に特徴マップ内の情報量が増加するにつれて、ネットワークはデータのより優れた表現を徐々に学習することができる。
論文 参考訳(メタデータ) (2020-03-03T07:27:44Z) - ACEnet: Anatomical Context-Encoding Network for Neuroanatomy
Segmentation [1.7080853582489066]
2次元深層学習法はその計算効率に好適である。
既存の2次元深層学習法では、3次元空間的情報を効果的に捉えることができない。
我々は2次元畳み込みニューラルネットワーク(CNN)に3次元空間および解剖コンテキストを組み込む解剖コンテキストネットワーク(ACEnet)を開発した。
提案手法は,脳構造セグメンテーションにおける最先端の代替手法と比較して,有望な性能を実現する。
論文 参考訳(メタデータ) (2020-02-13T20:48:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。