Asymptotics of Language Model Alignment
- URL: http://arxiv.org/abs/2404.01730v1
- Date: Tue, 2 Apr 2024 08:40:07 GMT
- Title: Asymptotics of Language Model Alignment
- Authors: Joy Qiping Yang, Salman Salamatian, Ziteng Sun, Ananda Theertha Suresh, Ahmad Beirami,
- Abstract summary: We show that the optimal KL-constrained RL solution satisfies a large deviation principle.
We also show that the rate of growth of the scaled cumulants of the reward is characterized by proper Renyi cross entropy.
- Score: 27.37118975691123
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Let $p$ denote a generative language model. Let $r$ denote a reward model that returns a scalar that captures the degree at which a draw from $p$ is preferred. The goal of language model alignment is to alter $p$ to a new distribution $\phi$ that results in a higher expected reward while keeping $\phi$ close to $p.$ A popular alignment method is the KL-constrained reinforcement learning (RL), which chooses a distribution $\phi_\Delta$ that maximizes $E_{\phi_{\Delta}} r(y)$ subject to a relative entropy constraint $KL(\phi_\Delta || p) \leq \Delta.$ Another simple alignment method is best-of-$N$, where $N$ samples are drawn from $p$ and one with highest reward is selected. In this paper, we offer a closed-form characterization of the optimal KL-constrained RL solution. We demonstrate that any alignment method that achieves a comparable trade-off between KL divergence and reward must approximate the optimal KL-constrained RL solution in terms of relative entropy. To further analyze the properties of alignment methods, we introduce two simplifying assumptions: we let the language model be memoryless, and the reward model be linear. Although these assumptions may not reflect complex real-world scenarios, they enable a precise characterization of the asymptotic behavior of both the best-of-$N$ alignment, and the KL-constrained RL method, in terms of information-theoretic quantities. We prove that the reward of the optimal KL-constrained RL solution satisfies a large deviation principle, and we fully characterize its rate function. We also show that the rate of growth of the scaled cumulants of the reward is characterized by a proper Renyi cross entropy. Finally, we show that best-of-$N$ is asymptotically equivalent to KL-constrained RL solution by proving that their expected rewards are asymptotically equal, and concluding that the two distributions must be close in KL divergence.
Related papers
- Reinforcement Learning from Human Feedback without Reward Inference: Model-Free Algorithm and Instance-Dependent Analysis [16.288866201806382]
We develop a model-free RLHF best policy identification algorithm, called $mathsfBSAD$, without explicit reward model inference.
The algorithm identifies the optimal policy directly from human preference information in a backward manner.
arXiv Detail & Related papers (2024-06-11T17:01:41Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Theoretical guarantees on the best-of-n alignment policy [110.21094183592358]
We show that the KL divergence between the best-of-$n$ policy and the base policy is equal to $log (n) - (n-1)/n.$
We propose a new estimator for the KL divergence and empirically show that it provides a tight approximation through a few examples.
arXiv Detail & Related papers (2024-01-03T18:39:13Z) - Convergence Rates for Stochastic Approximation: Biased Noise with Unbounded Variance, and Applications [2.0584253077707477]
We study the convergence properties of the Gradient Descent (SGD) method for finding a stationary point of an objective function $J(cdot)$.
Our results apply to a class of invex'' functions, which have the property that every stationary point is also a global minimizer.
arXiv Detail & Related papers (2023-12-05T15:22:39Z) - Demonstration-Regularized RL [39.96273388393764]
Using expert demonstrations, we identify an optimal policy at a sample complexity of order $widetildeO(mathrmPoly(S,A,H)/(varepsilon2 NmathrmE)$ in finite and $widetildeO(mathrmPoly(d,H)/(varepsilon2 NmathrmE)$ in linear Markov decision processes.
We establish that demonstration-regularized methods are provably efficient for reinforcement learning from human feedback.
arXiv Detail & Related papers (2023-10-26T10:54:47Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Provably Efficient Offline Reinforcement Learning with Trajectory-Wise
Reward [66.81579829897392]
We propose a novel offline reinforcement learning algorithm called Pessimistic vAlue iteRaTion with rEward Decomposition (PARTED)
PARTED decomposes the trajectory return into per-step proxy rewards via least-squares-based reward redistribution, and then performs pessimistic value based on the learned proxy reward.
To the best of our knowledge, PARTED is the first offline RL algorithm that is provably efficient in general MDP with trajectory-wise reward.
arXiv Detail & Related papers (2022-06-13T19:11:22Z) - Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free
Reinforcement Learning [52.76230802067506]
A novel model-free algorithm is proposed to minimize regret in episodic reinforcement learning.
The proposed algorithm employs an em early-settled reference update rule, with the aid of two Q-learning sequences.
The design principle of our early-settled variance reduction method might be of independent interest to other RL settings.
arXiv Detail & Related papers (2021-10-09T21:13:48Z) - On Reward-Free Reinforcement Learning with Linear Function Approximation [144.4210285338698]
Reward-free reinforcement learning (RL) is a framework which is suitable for both the batch RL setting and the setting where there are many reward functions of interest.
In this work, we give both positive and negative results for reward-free RL with linear function approximation.
arXiv Detail & Related papers (2020-06-19T17:59:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.