Impact of imperfect annotations on CNN training and performance for instance segmentation and classification in digital pathology
- URL: http://arxiv.org/abs/2410.14365v1
- Date: Fri, 18 Oct 2024 10:51:10 GMT
- Title: Impact of imperfect annotations on CNN training and performance for instance segmentation and classification in digital pathology
- Authors: Laura Gálvez Jiménez, Christine Decaestecker,
- Abstract summary: We investigate the impact of noisy annotations on the training and performance of a state-of-the-art CNN model for the combined task of detecting, segmenting and classifying nuclei in histopathology images.
Our results indicate that the utilisation of a small, correctly annotated validation set is instrumental in avoiding overfitting and maintaining model performance to a large extent.
- Score: 1.2277343096128712
- License:
- Abstract: Segmentation and classification of large numbers of instances, such as cell nuclei, are crucial tasks in digital pathology for accurate diagnosis. However, the availability of high-quality datasets for deep learning methods is often limited due to the complexity of the annotation process. In this work, we investigate the impact of noisy annotations on the training and performance of a state-of-the-art CNN model for the combined task of detecting, segmenting and classifying nuclei in histopathology images. In this context, we investigate the conditions for determining an appropriate number of training epochs to prevent overfitting to annotation noise during training. Our results indicate that the utilisation of a small, correctly annotated validation set is instrumental in avoiding overfitting and maintaining model performance to a large extent. Additionally, our findings underscore the beneficial role of pre-training.
Related papers
- Granularity Matters in Long-Tail Learning [62.30734737735273]
We offer a novel perspective on long-tail learning, inspired by an observation: datasets with finer granularity tend to be less affected by data imbalance.
We introduce open-set auxiliary classes that are visually similar to existing ones, aiming to enhance representation learning for both head and tail classes.
To prevent the overwhelming presence of auxiliary classes from disrupting training, we introduce a neighbor-silencing loss.
arXiv Detail & Related papers (2024-10-21T13:06:21Z) - Guidelines for Cerebrovascular Segmentation: Managing Imperfect Annotations in the context of Semi-Supervised Learning [3.231698506153459]
Supervised learning methods achieve excellent performances when fed with a sufficient amount of labeled data.
Such labels are typically highly time-consuming, error-prone and expensive to produce.
Semi-supervised learning approaches leverage both labeled and unlabeled data, and are very useful when only a small fraction of the dataset is labeled.
arXiv Detail & Related papers (2024-04-02T09:31:06Z) - Tackling the Incomplete Annotation Issue in Universal Lesion Detection
Task By Exploratory Training [10.627977735890191]
Universal lesion detection has great value for clinical practice as it aims to detect lesions in multiple organs on medical images.
Deep learning methods have shown promising results, but demanding large volumes of annotated data for training.
We introduce a teacher-student detection model as basis, where the teacher's predictions are combined with incomplete annotations to train the student.
arXiv Detail & Related papers (2023-09-23T08:44:07Z) - SegPrompt: Using Segmentation Map as a Better Prompt to Finetune Deep
Models for Kidney Stone Classification [62.403510793388705]
Deep learning has produced encouraging results for kidney stone classification using endoscope images.
The shortage of annotated training data poses a severe problem in improving the performance and generalization ability of the trained model.
We propose SegPrompt to alleviate the data shortage problems by exploiting segmentation maps from two aspects.
arXiv Detail & Related papers (2023-03-15T01:30:48Z) - Clinically Acceptable Segmentation of Organs at Risk in Cervical Cancer
Radiation Treatment from Clinically Available Annotations [0.0]
We present an approach to learn a deep learning model for the automatic segmentation of Organs at Risk (OARs) in cervical cancer radiation treatment.
We employ simples for automatic data cleaning to minimize data inhomogeneity, label noise, and missing annotations.
We develop a semi-supervised learning approach utilizing a teacher-student setup, annotation imputation, and uncertainty-guided training to learn in presence of missing annotations.
arXiv Detail & Related papers (2023-02-21T13:24:40Z) - Paced-Curriculum Distillation with Prediction and Label Uncertainty for
Image Segmentation [25.20877071896899]
In curriculum learning, the idea is to train on easier samples first and gradually increase the difficulty.
In self-paced learning, a pacing function defines the speed to adapt the training progress.
We develop a novel paced-curriculum distillation (PCD) for medical image segmentation.
arXiv Detail & Related papers (2023-02-02T12:24:14Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
We propose a novel weakly supervised segmentation framework based on partial points annotation.
We show that our method can achieve competitive performance compared to the fully supervised counterpart and the state-of-the-art methods.
arXiv Detail & Related papers (2020-07-10T15:41:29Z) - NINEPINS: Nuclei Instance Segmentation with Point Annotations [2.19221864553448]
We propose an algorithm for instance segmentation that uses pseudo-label segmentations generated automatically from point annotations.
With the generated segmentation masks, the proposed method trains a modified version of HoVer-Net model to achieve instance segmentation.
Experimental results show that the proposed method is robust to inaccuracies in point annotations and comparison with Hover-Net trained with fully annotated instance masks shows that a degradation in segmentation performance does not always imply a degradation in higher order tasks such as tissue classification.
arXiv Detail & Related papers (2020-06-24T08:28:52Z) - Confident Coreset for Active Learning in Medical Image Analysis [57.436224561482966]
We propose a novel active learning method, confident coreset, which considers both uncertainty and distribution for effectively selecting informative samples.
By comparative experiments on two medical image analysis tasks, we show that our method outperforms other active learning methods.
arXiv Detail & Related papers (2020-04-05T13:46:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.