EV2Gym: A Flexible V2G Simulator for EV Smart Charging Research and Benchmarking
- URL: http://arxiv.org/abs/2404.01849v1
- Date: Tue, 2 Apr 2024 11:22:53 GMT
- Title: EV2Gym: A Flexible V2G Simulator for EV Smart Charging Research and Benchmarking
- Authors: Stavros Orfanoudakis, Cesar Diaz-Londono, Yunus E. Yılmaz, Peter Palensky, Pedro P. Vergara,
- Abstract summary: This paper introduces the EV2Gym, a realistic simulator platform for the development and assessment of small and large-scale smart charging algorithms.
The proposed simulator is populated with comprehensive EV, charging station, power transformer, and EV behavior models validated using real data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As electric vehicle (EV) numbers rise, concerns about the capacity of current charging and power grid infrastructure grow, necessitating the development of smart charging solutions. While many smart charging simulators have been developed in recent years, only a few support the development of Reinforcement Learning (RL) algorithms in the form of a Gym environment, and those that do usually lack depth in modeling Vehicle-to-Grid (V2G) scenarios. To address the aforementioned issues, this paper introduces the EV2Gym, a realistic simulator platform for the development and assessment of small and large-scale smart charging algorithms within a standardized platform. The proposed simulator is populated with comprehensive EV, charging station, power transformer, and EV behavior models validated using real data. EV2Gym has a highly customizable interface empowering users to choose from pre-designed case studies or craft their own customized scenarios to suit their specific requirements. Moreover, it incorporates a diverse array of RL, mathematical programming, and heuristic algorithms to speed up the development and benchmarking of new solutions. By offering a unified and standardized platform, EV2Gym aims to provide researchers and practitioners with a robust environment for advancing and assessing smart charging algorithms.
Related papers
- Quantum-Powered Optimization for Electric Vehicle Charging Infrastructure Deployment [3.406797377411835]
A mathematical model is developed to identify the optimal placement of electric vehicle charging stations.
The model is validated using a real-world case study and solved using commercially available quantum computers from D-Wave.
arXiv Detail & Related papers (2024-11-11T03:03:20Z) - The Roles of Generative Artificial Intelligence in Internet of Electric Vehicles [65.14115295214636]
We specifically consider Internet of electric vehicles (IoEV) and we categorize GenAI for IoEV into four different layers.
We introduce various GenAI techniques used in each layer of IoEV applications.
Public datasets available for training the GenAI models are summarized.
arXiv Detail & Related papers (2024-09-24T05:12:10Z) - Large Language Model based Agent Framework for Electric Vehicle Charging Behavior Simulation [1.8749305679160366]
This paper introduces a new LLM based agent framework for simulating electric vehicle (EV) charging behavior.
It integrates user preferences, psychological characteristics, and environmental factors to optimize the charging process.
arXiv Detail & Related papers (2024-08-03T03:52:05Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
This paper develops an optimal EV charging/discharging control strategy for different EV users under dynamic environments.
A horizontal federated reinforcement learning (HFRL)-based method is proposed to fit various users' behaviors and dynamic environments.
Simulation results illustrate that the proposed real-time EV charging/discharging control strategy can perform well among various factors.
arXiv Detail & Related papers (2022-10-04T08:22:46Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - EVBattery: A Large-Scale Electric Vehicle Dataset for Battery Health and
Capacity Estimation [15.169440280225647]
Electric vehicles (EVs) play an important role in reducing carbon emissions.
As EV adoption accelerates, safety issues caused by EV batteries have become an important research topic.
In order to benchmark and develop data-driven methods for this task, we introduce a large and comprehensive dataset of EV batteries.
Our dataset is the first large-scale public dataset on real-world battery data, as existing data either include only several vehicles or is collected in the lab environment.
arXiv Detail & Related papers (2022-01-28T10:06:39Z) - An Intelligent Self-driving Truck System For Highway Transportation [81.12838700312308]
In this paper, we introduce an intelligent self-driving truck system.
Our presented system consists of three main components, 1) a realistic traffic simulation module for generating realistic traffic flow in testing scenarios, 2) a high-fidelity truck model which is designed and evaluated for mimicking real truck response in real-world deployment.
We also deploy our proposed system on a real truck and conduct real world experiments which shows our system's capacity of mitigating sim-to-real gap.
arXiv Detail & Related papers (2021-12-31T04:54:13Z) - Learning to Operate an Electric Vehicle Charging Station Considering
Vehicle-grid Integration [4.855689194518905]
We propose a novel centralized allocation and decentralized execution (CADE) reinforcement learning (RL) framework to maximize the charging station's profit.
In the centralized allocation process, EVs are allocated to either the waiting or charging spots. In the decentralized execution process, each charger makes its own charging/discharging decision while learning the action-value functions from a shared replay memory.
Numerical results show that the proposed CADE framework is both computationally efficient and scalable, and significantly outperforms the baseline model predictive control (MPC)
arXiv Detail & Related papers (2021-11-01T23:10:28Z) - Polymers for Extreme Conditions Designed Using Syntax-Directed
Variational Autoencoders [53.34780987686359]
Machine learning tools are now commonly employed to virtually screen material candidates with desired properties.
This approach is inefficient, and severely constrained by the candidates that human imagination can conceive.
We utilize syntax-directed variational autoencoders (VAE) in tandem with Gaussian process regression (GPR) models to discover polymers expected to be robust under three extreme conditions.
arXiv Detail & Related papers (2020-11-04T21:36:59Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.