Cooperative Students: Navigating Unsupervised Domain Adaptation in Nighttime Object Detection
- URL: http://arxiv.org/abs/2404.01988v3
- Date: Wed, 8 May 2024 16:54:39 GMT
- Title: Cooperative Students: Navigating Unsupervised Domain Adaptation in Nighttime Object Detection
- Authors: Jicheng Yuan, Anh Le-Tuan, Manfred Hauswirth, Danh Le-Phuoc,
- Abstract summary: Unsupervised Domain Adaptation (UDA) has shown significant advancements in object detection under well-lit conditions.
UDA's performance degrades notably in low-visibility scenarios, especially at night.
To address this problem, we propose a textbfCooperative textbfStudents (textbfCoS) framework.
- Score: 1.6624384368855527
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised Domain Adaptation (UDA) has shown significant advancements in object detection under well-lit conditions; however, its performance degrades notably in low-visibility scenarios, especially at night, posing challenges not only for its adaptability in low signal-to-noise ratio (SNR) conditions but also for the reliability and efficiency of automated vehicles. To address this problem, we propose a \textbf{Co}operative \textbf{S}tudents (\textbf{CoS}) framework that innovatively employs global-local transformations (GLT) and a proxy-based target consistency (PTC) mechanism to capture the spatial consistency in day- and night-time scenarios effectively, and thus bridge the significant domain shift across contexts. Building upon this, we further devise an adaptive IoU-informed thresholding (AIT) module to gradually avoid overlooking potential true positives and enrich the latent information in the target domain. Comprehensive experiments show that CoS essentially enhanced UDA performance in low-visibility conditions and surpasses current state-of-the-art techniques, achieving an increase in mAP of 3.0\%, 1.9\%, and 2.5\% on BDD100K, SHIFT, and ACDC datasets, respectively. Code is available at https://github.com/jichengyuan/Cooperitive_Students.
Related papers
- You Only Crash Once v2: Perceptually Consistent Strong Features for One-Stage Domain Adaptive Detection of Space Terrain [4.339510167603377]
In-situ detection of planetary, lunar, and small-body surface terrain is crucial for autonomous spacecraft applications.
Unsupervised Domain Adaptation (UDA) offers a promising solution by facilitating model training with disparate data sources.
We propose novel additions to the VSA scheme that enhance terrain detection capabilities under UDA.
arXiv Detail & Related papers (2025-01-23T14:58:49Z) - Multi-Modality Driven LoRA for Adverse Condition Depth Estimation [61.525312117638116]
We propose Multi-Modality Driven LoRA (MMD-LoRA) for Adverse Condition Depth Estimation.
It consists of two core components: Prompt Driven Domain Alignment (PDDA) and Visual-Text Consistent Contrastive Learning (VTCCL)
It achieves state-of-the-art performance on the nuScenes and Oxford RobotCar datasets.
arXiv Detail & Related papers (2024-12-28T14:23:58Z) - World-Consistent Data Generation for Vision-and-Language Navigation [52.08816337783936]
Vision-and-Language Navigation (VLN) is a challenging task that requires an agent to navigate through photorealistic environments following natural-language instructions.
One main obstacle existing in VLN is data scarcity, leading to poor generalization performance over unseen environments.
We propose the world-consistent data generation (WCGEN), an efficacious data-augmentation framework satisfying both diversity and world-consistency.
arXiv Detail & Related papers (2024-12-09T11:40:54Z) - Point Cloud Understanding via Attention-Driven Contrastive Learning [64.65145700121442]
Transformer-based models have advanced point cloud understanding by leveraging self-attention mechanisms.
PointACL is an attention-driven contrastive learning framework designed to address these limitations.
Our method employs an attention-driven dynamic masking strategy that guides the model to focus on under-attended regions.
arXiv Detail & Related papers (2024-11-22T05:41:00Z) - Cross-Domain Learning for Video Anomaly Detection with Limited Supervision [12.290352736331602]
Video Anomaly Detection (VAD) automates the identification of unusual events, such as security threats in surveillance videos.
Existing cross-domain VAD methods focus on unsupervised learning, resulting in performance that falls short of real-world expectations.
We introduce a novel weakly-supervised framework for Cross-Domain Learning (CDL) in VAD that incorporates external data during training by estimating its prediction bias and adaptively minimizing that using the predicted uncertainty.
arXiv Detail & Related papers (2024-08-09T17:28:29Z) - SADA: Semantic adversarial unsupervised domain adaptation for Temporal Action Localization [32.35611853688068]
We introduce, for the first time, an approach for Unsupervised Domain Adaptation in sparse TAL.
We pioneer the development of a domain adaptation model that operates on realistic sparse action detection benchmarks.
We present a novel set of benchmarks based on EpicKitchens100 and CharadesEgo, that evaluate multiple domain shifts.
arXiv Detail & Related papers (2023-12-20T19:08:49Z) - Enhancing Visual Domain Adaptation with Source Preparation [5.287588907230967]
Domain Adaptation techniques fail to consider the characteristics of the source domain itself.
We propose Source Preparation (SP), a method to mitigate source domain biases.
We show that SP enhances UDA across a range of visual domains, with improvements up to 40.64% in mIoU over baseline.
arXiv Detail & Related papers (2023-06-16T18:56:44Z) - Adaptive Sparse Convolutional Networks with Global Context Enhancement
for Faster Object Detection on Drone Images [26.51970603200391]
This paper investigates optimizing the detection head based on the sparse convolution.
It suffers from inadequate integration of contextual information of tiny objects.
We propose a novel global context-enhanced adaptive sparse convolutional network.
arXiv Detail & Related papers (2023-03-25T14:42:50Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z) - Lifelong Unsupervised Domain Adaptive Person Re-identification with
Coordinated Anti-forgetting and Adaptation [127.6168183074427]
We propose a new task, Lifelong Unsupervised Domain Adaptive (LUDA) person ReID.
This is challenging because it requires the model to continuously adapt to unlabeled data of the target environments.
We design an effective scheme for this task, dubbed CLUDA-ReID, where the anti-forgetting is harmoniously coordinated with the adaptation.
arXiv Detail & Related papers (2021-12-13T13:19:45Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.