Specularity Factorization for Low-Light Enhancement
- URL: http://arxiv.org/abs/2404.01998v1
- Date: Tue, 2 Apr 2024 14:41:42 GMT
- Title: Specularity Factorization for Low-Light Enhancement
- Authors: Saurabh Saini, P J Narayanan,
- Abstract summary: We present a new additive image factorization technique that treats images to be composed of multiple latent components.
Our model-driven em RSFNet estimates these factors by unrolling the optimization into network layers.
The resultant factors are interpretable by design and can be fused for different image enhancement tasks via a network or combined directly by the user.
- Score: 2.7961648901433134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new additive image factorization technique that treats images to be composed of multiple latent specular components which can be simply estimated recursively by modulating the sparsity during decomposition. Our model-driven {\em RSFNet} estimates these factors by unrolling the optimization into network layers requiring only a few scalars to be learned. The resultant factors are interpretable by design and can be fused for different image enhancement tasks via a network or combined directly by the user in a controllable fashion. Based on RSFNet, we detail a zero-reference Low Light Enhancement (LLE) application trained without paired or unpaired supervision. Our system improves the state-of-the-art performance on standard benchmarks and achieves better generalization on multiple other datasets. We also integrate our factors with other task specific fusion networks for applications like deraining, deblurring and dehazing with negligible overhead thereby highlighting the multi-domain and multi-task generalizability of our proposed RSFNet. The code and data is released for reproducibility on the project homepage.
Related papers
- LiNeS: Post-training Layer Scaling Prevents Forgetting and Enhances Model Merging [80.17238673443127]
LiNeS is a post-training editing technique designed to preserve pre-trained generalization while enhancing fine-tuned task performance.
LiNeS demonstrates significant improvements in both single-task and multi-task settings across various benchmarks in vision and natural language processing.
arXiv Detail & Related papers (2024-10-22T16:26:05Z) - Reversible Decoupling Network for Single Image Reflection Removal [15.763420129991255]
High-level semantic clues tend to be compressed or discarded during layer-by-layer propagation.
We propose a novel architecture called Reversible Decoupling Network (RDNet)
RDNet employs a reversible encoder to secure valuable information while flexibly decoupling transmission- and reflection-relevant features during the forward pass.
arXiv Detail & Related papers (2024-10-10T15:58:27Z) - Towards Architecture-Agnostic Untrained Network Priors for Image Reconstruction with Frequency Regularization [14.73423587548693]
We propose efficient architecture-agnostic techniques to directly modulate the spectral bias of network priors.
We show that, with just a few lines of code, we can reduce overfitting in underperforming architectures and close performance gaps with high-performing counterparts.
Results signify for the first time that architectural biases, overfitting, and runtime issues of untrained network priors can be simultaneously addressed without architectural modifications.
arXiv Detail & Related papers (2023-12-15T18:01:47Z) - Learning Deep Context-Sensitive Decomposition for Low-Light Image
Enhancement [58.72667941107544]
A typical framework is to simultaneously estimate the illumination and reflectance, but they disregard the scene-level contextual information encapsulated in feature spaces.
We develop a new context-sensitive decomposition network architecture to exploit the scene-level contextual dependencies on spatial scales.
We develop a lightweight CSDNet (named LiteCSDNet) by reducing the number of channels.
arXiv Detail & Related papers (2021-12-09T06:25:30Z) - Style Normalization and Restitution for DomainGeneralization and
Adaptation [88.86865069583149]
An effective domain generalizable model is expected to learn feature representations that are both generalizable and discriminative.
In this paper, we design a novel Style Normalization and Restitution module (SNR) to ensure both high generalization and discrimination capability of the networks.
arXiv Detail & Related papers (2021-01-03T09:01:39Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
We propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net.
To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network.
Our network can obtain state-of-the-art performance for representation learning and clustering.
arXiv Detail & Related papers (2020-09-08T13:10:21Z) - OverNet: Lightweight Multi-Scale Super-Resolution with Overscaling
Network [3.6683231417848283]
We introduce OverNet, a deep but lightweight convolutional network to solve SISR at arbitrary scale factors with a single model.
We show that our network outperforms previous state-of-the-art results in standard benchmarks while using fewer parameters than previous approaches.
arXiv Detail & Related papers (2020-08-05T22:10:29Z) - A Retinex based GAN Pipeline to Utilize Paired and Unpaired Datasets for
Enhancing Low Light Images [0.0]
This paper presents a novel deep learning pipeline that can learn from both paired and unpaired datasets.
CNNs that are optimized to minimize standard loss, and Generative Adversarial Networks (GANs) that are optimized to minimize the adversarial loss are used.
arXiv Detail & Related papers (2020-06-27T07:12:21Z) - ResNeSt: Split-Attention Networks [86.25490825631763]
We present a modularized architecture, which applies the channel-wise attention on different network branches to leverage their success in capturing cross-feature interactions and learning diverse representations.
Our model, named ResNeSt, outperforms EfficientNet in accuracy and latency trade-off on image classification.
arXiv Detail & Related papers (2020-04-19T20:40:31Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.