論文の概要: LastResort at SemEval-2024 Task 3: Exploring Multimodal Emotion Cause Pair Extraction as Sequence Labelling Task
- arxiv url: http://arxiv.org/abs/2404.02088v1
- Date: Tue, 2 Apr 2024 16:32:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 15:39:47.775462
- Title: LastResort at SemEval-2024 Task 3: Exploring Multimodal Emotion Cause Pair Extraction as Sequence Labelling Task
- Title(参考訳): LastResort at SemEval-2024 Task 3: Exploring Multimodal Emotion caused Pair extract as Sequence Labelling Task
- Authors: Suyash Vardhan Mathur, Akshett Rai Jindal, Hardik Mittal, Manish Shrivastava,
- Abstract要約: SemEval 2024は会話におけるマルチモーダル感情原因分析のタスクを導入している。
本稿では,この課題を発話ラベリングとシーケンスラベリングの問題として扱うモデルを提案する。
このタスクの公式リーダーボードでは、私たちのアーキテクチャは8位にランクされ、リーダーボードのF1スコアは0.1759でした。
- 参考スコア(独自算出の注目度): 3.489826905722736
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conversation is the most natural form of human communication, where each utterance can range over a variety of possible emotions. While significant work has been done towards the detection of emotions in text, relatively little work has been done towards finding the cause of the said emotions, especially in multimodal settings. SemEval 2024 introduces the task of Multimodal Emotion Cause Analysis in Conversations, which aims to extract emotions reflected in individual utterances in a conversation involving multiple modalities (textual, audio, and visual modalities) along with the corresponding utterances that were the cause for the emotion. In this paper, we propose models that tackle this task as an utterance labeling and a sequence labeling problem and perform a comparative study of these models, involving baselines using different encoders, using BiLSTM for adding contextual information of the conversation, and finally adding a CRF layer to try to model the inter-dependencies between adjacent utterances more effectively. In the official leaderboard for the task, our architecture was ranked 8th, achieving an F1-score of 0.1759 on the leaderboard.
- Abstract(参考訳): 会話は人間のコミュニケーションの最も自然な形態であり、それぞれの発話は様々な感情にまたがる。
テキスト中の感情を検出するための重要な作業は行われているが、特にマルチモーダル環境では、その感情の原因を見つけるための作業はほとんど行われていない。
SemEval 2024では、会話におけるマルチモーダル感情原因分析(Multimodal Emotion Cause Analysis in Conversations)というタスクを導入している。
本稿では,この課題を発話ラベリングとシーケンスラベリングの問題として取り組んだモデルを提案し,異なるエンコーダを用いたベースライン,会話の文脈情報追加のためのBiLSTM,そして最後にCRF層を追加して,隣接発話間の相互依存性をより効果的にモデル化する手法を提案する。
このタスクの公式リーダーボードでは、私たちのアーキテクチャは8位にランクされ、リーダーボードのF1スコアは0.1759でした。
関連論文リスト
- Emotion-LLaMA: Multimodal Emotion Recognition and Reasoning with Instruction Tuning [55.127202990679976]
28,618粒の粗粒と4,487粒の細粒のアノテートサンプルを含むMERRデータセットを導入した。
このデータセットは、さまざまなシナリオから学習し、現実のアプリケーションに一般化することを可能にする。
本研究では,感情特異的エンコーダによる音声,視覚,テキスト入力をシームレスに統合するモデルであるEmotion-LLaMAを提案する。
論文 参考訳(メタデータ) (2024-06-17T03:01:22Z) - SemEval-2024 Task 3: Multimodal Emotion Cause Analysis in Conversations [53.60993109543582]
SemEval-2024 Task 3 "Multimodal Emotion Cause Analysis in Conversations" は、会話からすべての感情とそれに対応する原因を抽出することを目的としている。
異なるモダリティ設定の下では、2つのサブタスクから構成される: 会話におけるテキスト感情因果ペア抽出(TECPE)と会話におけるマルチモーダル感情因果ペア抽出(MECPE)である。
本稿では,タスク,データセット,評価設定について紹介し,トップチームのシステムを要約し,参加者の知見について議論する。
論文 参考訳(メタデータ) (2024-05-19T09:59:00Z) - SemEval 2024 -- Task 10: Emotion Discovery and Reasoning its Flip in
Conversation (EDiReF) [61.49972925493912]
SemEval-2024 Task 10は、コードミキシングされた対話における感情の識別に焦点を当てた共有タスクである。
このタスクは3つの異なるサブタスクから構成される - コードミックス対話のための会話における感情認識、コードミックス対話のための感情フリップ推論、および英語対話のための感情フリップ推論である。
このタスクには84人の参加者が参加し、各サブタスクのF1スコアは0.70、0.79、0.76に達した。
論文 参考訳(メタデータ) (2024-02-29T08:20:06Z) - A Multi-Task, Multi-Modal Approach for Predicting Categorical and
Dimensional Emotions [0.0]
分類的・次元的な感情を予測するマルチタスク・マルチモーダルシステムを提案する。
その結果,2種類の感情の相互規則化の重要性が強調された。
論文 参考訳(メタデータ) (2023-12-31T16:48:03Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
会話音声合成(CSS)は,会話環境の中で適切な韻律と感情のインフレクションで発話を正確に表現することを目的としている。
データ不足の問題に対処するため、私たちはカテゴリと強度の点で感情的なラベルを慎重に作成します。
我々のモデルは感情の理解と表現においてベースラインモデルよりも優れています。
論文 参考訳(メタデータ) (2023-12-19T08:47:50Z) - VISU at WASSA 2023 Shared Task: Detecting Emotions in Reaction to News
Stories Leveraging BERT and Stacked Embeddings [3.797177597247675]
我々のシステムVISUは、ニュース記事に反応して書かれたエッセイから感情分類の共有タスク (3) に参加した。
本研究は,単語埋め込み表現と事前設定戦略を組み合わせた深層学習(DL)モデルの開発に重点を置いている。
論文 参考訳(メタデータ) (2023-07-27T19:42:22Z) - EmoWOZ: A Large-Scale Corpus and Labelling Scheme for Emotion in
Task-Oriented Dialogue Systems [3.3010169113961325]
EmoWOZはタスク指向対話の大規模手動感情注釈コーパスである。
11K以上の対話と83K以上の感情アノテーションを含む。
本稿では,タスク指向対話に適した新しい感情ラベリング手法を提案する。
論文 参考訳(メタデータ) (2021-09-10T15:00:01Z) - Emotion Recognition from Multiple Modalities: Fundamentals and
Methodologies [106.62835060095532]
マルチモーダル感情認識(MER)のいくつかの重要な側面について論じる。
まず、広く使われている感情表現モデルと感情モダリティの簡単な紹介から始める。
次に、既存の感情アノテーション戦略とそれに対応する計算タスクを要約する。
最後に,実世界のアプリケーションについて概説し,今後の方向性について論じる。
論文 参考訳(メタデータ) (2021-08-18T21:55:20Z) - Discovering Emotion and Reasoning its Flip in Multi-Party Conversations
using Masked Memory Network and Transformer [16.224961520924115]
感情フリップ推論(EFR)の新たな課題について紹介する。
EFRは、ある時点で感情状態が反転した過去の発話を特定することを目的としている。
後者のタスクに対して,前者およびトランスフォーマーベースのネットワークに対処するためのマスクメモリネットワークを提案する。
論文 参考訳(メタデータ) (2021-03-23T07:42:09Z) - Modality-Transferable Emotion Embeddings for Low-Resource Multimodal
Emotion Recognition [55.44502358463217]
本稿では、上記の問題に対処するため、感情を埋め込んだモダリティ変換可能なモデルを提案する。
我々のモデルは感情カテゴリーのほとんどで最先端のパフォーマンスを達成する。
私たちのモデルは、目に見えない感情に対するゼロショットと少数ショットのシナリオにおいて、既存のベースラインよりも優れています。
論文 参考訳(メタデータ) (2020-09-21T06:10:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。