論文の概要: Team A at SemEval-2025 Task 11: Breaking Language Barriers in Emotion Detection with Multilingual Models
- arxiv url: http://arxiv.org/abs/2502.19856v1
- Date: Thu, 27 Feb 2025 07:59:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:58:15.010170
- Title: Team A at SemEval-2025 Task 11: Breaking Language Barriers in Emotion Detection with Multilingual Models
- Title(参考訳): SemEval-2025 Task 11のチームA:多言語モデルによる感情検出における言語バリアの破壊
- Authors: P Sam Sahil, Anupam Jamatia,
- Abstract要約: 本稿では,チームAからSemEval 2025タスク11に提出された「テキストベース感情検出におけるギャップを埋める」システムについて述べる。
このタスクは、テキストスニペットから話者の知覚された感情を識別することを含み、各インスタンスには喜び、悲しみ、恐怖、怒り、驚き、嫌悪の6つの感情の1つが注がれた。
検討した様々なアプローチの中で, マルチリンガル埋め込みと完全連結層を組み合わせることで, 最高の性能を実現した。
- 参考スコア(独自算出の注目度): 0.06138671548064355
- License:
- Abstract: This paper describes the system submitted by Team A to SemEval 2025 Task 11, ``Bridging the Gap in Text-Based Emotion Detection.'' The task involved identifying the perceived emotion of a speaker from text snippets, with each instance annotated with one of six emotions: joy, sadness, fear, anger, surprise, or disgust. A dataset provided by the task organizers served as the foundation for training and evaluating our models. Among the various approaches explored, the best performance was achieved using multilingual embeddings combined with a fully connected layer. This paper details the system architecture, discusses experimental results, and highlights the advantages of leveraging multilingual representations for robust emotion detection in text.
- Abstract(参考訳): 本稿では,チームAがSemEval 2025 Task 11に提出したテキストベース感情検出におけるギャップを埋めるシステムについて述べる。
「」 テキストスニペットから話者の知覚された感情を識別する作業で、各事例には喜び、悲しみ、恐怖、怒り、驚き、嫌悪の6つの感情の1つが注がれた。
タスクオーガナイザによって提供されるデータセットは、モデルのトレーニングと評価の基盤として役立ちました。
検討した様々なアプローチの中で, マルチリンガル埋め込みと完全連結層を組み合わせることで, 最高の性能を実現した。
本稿では, システムアーキテクチャを詳述し, 実験結果について考察し, 多言語表現の利点をテキストの堅牢な感情検出に活用する方法について述べる。
関連論文リスト
- BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages [93.92804151830744]
BRIGHTERは28の言語で感情アノテートされたデータセットの集合である。
データ収集とアノテーションプロセスとこれらのデータセット構築の課題について説明する。
BRIGHTERデータセットは、テキストベースの感情認識のギャップを埋めるためのステップであることを示す。
論文 参考訳(メタデータ) (2025-02-17T15:39:50Z) - GenAI Content Detection Task 1: English and Multilingual Machine-Generated Text Detection: AI vs. Human [71.42669028683741]
我々は,Coling 2025におけるGenAIワークショップの一環として,バイナリマシン生成テキスト検出における共有タスクを提案する。
このタスクは、モノリンガル(英: Monolingual)とマルチリンガル(英: Multilingual)の2つのサブタスクから構成される。
本稿では,データの包括的概要,結果の概要,参加システムの詳細な説明,提出内容の詳細な分析について述べる。
論文 参考訳(メタデータ) (2025-01-19T11:11:55Z) - Large Language Models for Cross-lingual Emotion Detection [0.0]
本稿では,言語間感情検出に着目したWASSA 2024タスク2のシステム記述について述べる。
大規模言語モデル(LLM)とそれらのアンサンブルを組み合わせて、異なる言語間の感情を効果的に理解し分類する。
論文 参考訳(メタデータ) (2024-10-21T13:00:09Z) - PanoSent: A Panoptic Sextuple Extraction Benchmark for Multimodal Conversational Aspect-based Sentiment Analysis [74.41260927676747]
本稿では,マルチモーダル対話感分析(ABSA)を導入することでギャップを埋める。
タスクをベンチマークするために、手動と自動の両方で注釈付けされたデータセットであるPanoSentを構築し、高品質、大規模、マルチモーダル、マルチ言語主義、マルチシナリオを特徴とし、暗黙の感情要素と明示的な感情要素の両方をカバーする。
課題を効果的に解決するために,新しい多モーダルな大規模言語モデル(すなわちSentica)とパラフレーズベースの検証機構とともに,新しい感覚の連鎖推論フレームワークを考案した。
論文 参考訳(メタデータ) (2024-08-18T13:51:01Z) - SemEval-2024 Task 3: Multimodal Emotion Cause Analysis in Conversations [53.60993109543582]
SemEval-2024 Task 3 "Multimodal Emotion Cause Analysis in Conversations" は、会話からすべての感情とそれに対応する原因を抽出することを目的としている。
異なるモダリティ設定の下では、2つのサブタスクから構成される: 会話におけるテキスト感情因果ペア抽出(TECPE)と会話におけるマルチモーダル感情因果ペア抽出(MECPE)である。
本稿では,タスク,データセット,評価設定について紹介し,トップチームのシステムを要約し,参加者の知見について議論する。
論文 参考訳(メタデータ) (2024-05-19T09:59:00Z) - LastResort at SemEval-2024 Task 3: Exploring Multimodal Emotion Cause Pair Extraction as Sequence Labelling Task [3.489826905722736]
SemEval 2024は会話におけるマルチモーダル感情原因分析のタスクを導入している。
本稿では,この課題を発話ラベリングとシーケンスラベリングの問題として扱うモデルを提案する。
このタスクの公式リーダーボードでは、私たちのアーキテクチャは8位にランクされ、リーダーボードのF1スコアは0.1759でした。
論文 参考訳(メタデータ) (2024-04-02T16:32:49Z) - SemEval 2024 -- Task 10: Emotion Discovery and Reasoning its Flip in
Conversation (EDiReF) [61.49972925493912]
SemEval-2024 Task 10は、コードミキシングされた対話における感情の識別に焦点を当てた共有タスクである。
このタスクは3つの異なるサブタスクから構成される - コードミックス対話のための会話における感情認識、コードミックス対話のための感情フリップ推論、および英語対話のための感情フリップ推論である。
このタスクには84人の参加者が参加し、各サブタスクのF1スコアは0.70、0.79、0.76に達した。
論文 参考訳(メタデータ) (2024-02-29T08:20:06Z) - Effect of Attention and Self-Supervised Speech Embeddings on
Non-Semantic Speech Tasks [3.570593982494095]
我々は、より現実的な認識課題として、音声感情理解を考察する。
我々は,ComParEの多言語話者の豊富なデータセットと,その感情の「感情共有」や知覚の多言語回帰ターゲットを利用する。
以上の結果から,HuBERT-Largeの自己アテンションに基づく軽量シーケンスモデルでは,報告されたベースラインよりも4.6%向上していることがわかった。
論文 参考訳(メタデータ) (2023-08-28T07:11:27Z) - VISU at WASSA 2023 Shared Task: Detecting Emotions in Reaction to News
Stories Leveraging BERT and Stacked Embeddings [3.797177597247675]
我々のシステムVISUは、ニュース記事に反応して書かれたエッセイから感情分類の共有タスク (3) に参加した。
本研究は,単語埋め込み表現と事前設定戦略を組み合わせた深層学習(DL)モデルの開発に重点を置いている。
論文 参考訳(メタデータ) (2023-07-27T19:42:22Z) - Emotion Carrier Recognition from Personal Narratives [74.24768079275222]
パーソナル・ナラティブズ(Personal Narratives、PN)は、自分の経験から事実、出来事、思考を回想するものである。
感情キャリア認識(ECR)のための新しい課題を提案する。
論文 参考訳(メタデータ) (2020-08-17T17:16:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。