Jailbreaking Leading Safety-Aligned LLMs with Simple Adaptive Attacks
- URL: http://arxiv.org/abs/2404.02151v3
- Date: Mon, 07 Oct 2024 16:35:15 GMT
- Title: Jailbreaking Leading Safety-Aligned LLMs with Simple Adaptive Attacks
- Authors: Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion,
- Abstract summary: We show that even the most recent safety-aligned LLMs are not robust to simple adaptive jailbreaking attacks.
We achieve 100% attack success rate -- according to GPT-4 as a judge -- on Vicuna-13B, Mistral-7B, Phi-3-Mini, Nemotron-4-340B, Llama-2-Chat-7B/13B/70B, Llama-3-Instruct-8B, Gemma-7B, GPT-3.5, GPT-4o, and R2D2 from HarmBench.
- Score: 38.25697806663553
- License:
- Abstract: We show that even the most recent safety-aligned LLMs are not robust to simple adaptive jailbreaking attacks. First, we demonstrate how to successfully leverage access to logprobs for jailbreaking: we initially design an adversarial prompt template (sometimes adapted to the target LLM), and then we apply random search on a suffix to maximize a target logprob (e.g., of the token "Sure"), potentially with multiple restarts. In this way, we achieve 100% attack success rate -- according to GPT-4 as a judge -- on Vicuna-13B, Mistral-7B, Phi-3-Mini, Nemotron-4-340B, Llama-2-Chat-7B/13B/70B, Llama-3-Instruct-8B, Gemma-7B, GPT-3.5, GPT-4o, and R2D2 from HarmBench that was adversarially trained against the GCG attack. We also show how to jailbreak all Claude models -- that do not expose logprobs -- via either a transfer or prefilling attack with a 100% success rate. In addition, we show how to use random search on a restricted set of tokens for finding trojan strings in poisoned models -- a task that shares many similarities with jailbreaking -- which is the algorithm that brought us the first place in the SaTML'24 Trojan Detection Competition. The common theme behind these attacks is that adaptivity is crucial: different models are vulnerable to different prompting templates (e.g., R2D2 is very sensitive to in-context learning prompts), some models have unique vulnerabilities based on their APIs (e.g., prefilling for Claude), and in some settings, it is crucial to restrict the token search space based on prior knowledge (e.g., for trojan detection). For reproducibility purposes, we provide the code, logs, and jailbreak artifacts in the JailbreakBench format at https://github.com/tml-epfl/llm-adaptive-attacks.
Related papers
- What Features in Prompts Jailbreak LLMs? Investigating the Mechanisms Behind Attacks [3.0700566896646047]
We show that different jailbreaking methods work via different nonlinear features in prompts.
These mechanistic jailbreaks are able to jailbreak Gemma-7B-IT more reliably than 34 of the 35 techniques that it was trained on.
arXiv Detail & Related papers (2024-11-02T17:29:47Z) - Transferable Ensemble Black-box Jailbreak Attacks on Large Language Models [0.0]
We propose a novel black-box jailbreak attacking framework that incorporates various LLM-as-Attacker methods.
Our method is designed based on three key observations from existing jailbreaking studies and practices.
arXiv Detail & Related papers (2024-10-31T01:55:33Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
We propose a novel method that "translates" garbled adversarial prompts into coherent and human-readable natural language adversarial prompts.
It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks.
Our method achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks.
arXiv Detail & Related papers (2024-10-15T06:31:04Z) - Effective and Evasive Fuzz Testing-Driven Jailbreaking Attacks against LLMs [33.87649859430635]
Large Language Models (LLMs) have excelled in various tasks but are still vulnerable to jailbreaking attacks.
We introduce a novel jailbreaking attack framework that adapts the black-box fuzz testing approach with a series of customized designs.
Our method achieves attack success rates of over 90%,80% and 74%, respectively, exceeding existing baselines by more than 60%.
arXiv Detail & Related papers (2024-09-23T10:03:09Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
Large Language Models (LLMs) are increasingly being deployed in safety-critical applications.
LLMs can still be jailbroken by carefully crafted malicious prompts, producing content that violates policy regulations.
We propose a novel EnJa attack to hide harmful instructions using prompt-level jailbreak, boost the attack success rate using a gradient-based attack, and connect the two types of jailbreak attacks via a template-based connector.
arXiv Detail & Related papers (2024-08-07T07:46:08Z) - EasyJailbreak: A Unified Framework for Jailbreaking Large Language Models [53.87416566981008]
This paper introduces EasyJailbreak, a unified framework simplifying the construction and evaluation of jailbreak attacks against Large Language Models (LLMs)
It builds jailbreak attacks using four components: Selector, Mutator, Constraint, and Evaluator.
Our validation across 10 distinct LLMs reveals a significant vulnerability, with an average breach probability of 60% under various jailbreaking attacks.
arXiv Detail & Related papers (2024-03-18T18:39:53Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
Large language models (LLMs) are vulnerable to jailbreak attacks.
Existing jailbreaking methods are computationally costly.
We propose the weak-to-strong jailbreaking attack.
arXiv Detail & Related papers (2024-01-30T18:48:37Z) - Jailbreaking GPT-4V via Self-Adversarial Attacks with System Prompts [64.60375604495883]
We discover a system prompt leakage vulnerability in GPT-4V.
By employing GPT-4 as a red teaming tool against itself, we aim to search for potential jailbreak prompts leveraging stolen system prompts.
We also evaluate the effect of modifying system prompts to defend against jailbreaking attacks.
arXiv Detail & Related papers (2023-11-15T17:17:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.