What Features in Prompts Jailbreak LLMs? Investigating the Mechanisms Behind Attacks
- URL: http://arxiv.org/abs/2411.03343v1
- Date: Sat, 02 Nov 2024 17:29:47 GMT
- Title: What Features in Prompts Jailbreak LLMs? Investigating the Mechanisms Behind Attacks
- Authors: Nathalie Maria Kirch, Severin Field, Stephen Casper,
- Abstract summary: We show that different jailbreaking methods work via different nonlinear features in prompts.
These mechanistic jailbreaks are able to jailbreak Gemma-7B-IT more reliably than 34 of the 35 techniques that it was trained on.
- Score: 3.0700566896646047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While `jailbreaks' have been central to research on the safety and reliability of LLMs (large language models), the underlying mechanisms behind these attacks are not well understood. Some prior works have used linear methods to analyze jailbreak prompts or model refusal. Here, however, we compare linear and nonlinear methods to study the features in prompts that contribute to successful jailbreaks. We do this by probing for jailbreak success based only on the portions of the latent representations corresponding to prompt tokens. First, we introduce a dataset of 10,800 jailbreak attempts from 35 attack methods. We then show that different jailbreaking methods work via different nonlinear features in prompts. Specifically, we find that while probes can distinguish between successful and unsuccessful jailbreaking prompts with a high degree of accuracy, they often transfer poorly to held-out attack methods. We also show that nonlinear probes can be used to mechanistically jailbreak the LLM by guiding the design of adversarial latent perturbations. These mechanistic jailbreaks are able to jailbreak Gemma-7B-IT more reliably than 34 of the 35 techniques that it was trained on. Ultimately, our results suggest that jailbreaks cannot be thoroughly understood in terms of universal or linear prompt features alone.
Related papers
- Test-Time Immunization: A Universal Defense Framework Against Jailbreaks for (Multimodal) Large Language Models [80.66766532477973]
Test-time IMmunization (TIM) can adaptively defend against various jailbreak attacks in a self-evolving way.<n>Test-time IMmunization (TIM) can adaptively defend against various jailbreak attacks in a self-evolving way.
arXiv Detail & Related papers (2025-05-28T11:57:46Z) - JailbreaksOverTime: Detecting Jailbreak Attacks Under Distribution Shift [10.737151905158926]
We show how to use continuous learning to detect jailbreaks and adapt rapidly to new emerging jailbreaks.<n>We introduce an unsupervised active monitoring approach to identify novel jailbreaks.
arXiv Detail & Related papers (2025-04-28T03:01:51Z) - Foot-In-The-Door: A Multi-turn Jailbreak for LLMs [40.958137601841734]
A key challenge is jailbreak, where adversarial prompts bypass built-in safeguards to elicit harmful disallowed outputs.<n>Inspired by psychological foot-in-the-door principles, we introduce FITD,a novel multi-turn jailbreak method.<n>Our approach progressively escalates the malicious intent of user queries through intermediate bridge prompts and aligns the model's response by itself to induce toxic responses.
arXiv Detail & Related papers (2025-02-27T06:49:16Z) - Rewrite to Jailbreak: Discover Learnable and Transferable Implicit Harmfulness Instruction [32.04296423547049]
Large Language Models (LLMs) are widely applied in various domains.
We propose the Rewrite to Jailbreak (R2J) approach, a transferable black-box jailbreak method to attack LLMs.
arXiv Detail & Related papers (2025-02-16T11:43:39Z) - xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
Black-box jailbreak is an attack where crafted prompts bypass safety mechanisms in large language models.<n>We propose a novel black-box jailbreak method leveraging reinforcement learning (RL)<n>We introduce a comprehensive jailbreak evaluation framework incorporating keywords, intent matching, and answer validation to provide a more rigorous and holistic assessment of jailbreak success.
arXiv Detail & Related papers (2025-01-28T06:07:58Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.<n>We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.<n>Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - Shaping the Safety Boundaries: Understanding and Defending Against Jailbreaks in Large Language Models [55.253208152184065]
Jailbreaking in Large Language Models (LLMs) is a major security concern as it can deceive LLMs to generate harmful text.<n>We conduct a detailed analysis of seven different jailbreak methods and find that disagreements stem from insufficient observation samples.<n>We propose a novel defense called textbfActivation Boundary Defense (ABD), which adaptively constrains the activations within the safety boundary.
arXiv Detail & Related papers (2024-12-22T14:18:39Z) - JailbreakLens: Interpreting Jailbreak Mechanism in the Lens of Representation and Circuit [21.380057443286034]
Large language models (LLMs) are vulnerable to jailbreak attacks.
Jailbreak attacks are prevalent, but the understanding of their underlying mechanisms remains limited.
arXiv Detail & Related papers (2024-11-17T16:08:34Z) - Rapid Response: Mitigating LLM Jailbreaks with a Few Examples [13.841146655178585]
We develop rapid response techniques to look to block whole classes of jailbreaks after observing only a handful of attacks.
We evaluate five rapid response methods, all of which use jailbreak proliferation.
Our strongest method reduces attack success rate by a factor greater than 240 on an in-distribution set of jailbreaks and a factor greater than 15 on an out-of-distribution set.
arXiv Detail & Related papers (2024-11-12T02:44:49Z) - SQL Injection Jailbreak: a structural disaster of large language models [71.55108680517422]
We propose a novel jailbreak method, which utilizes the construction of input prompts by LLMs to inject jailbreak information into user prompts.
Our SIJ method achieves nearly 100% attack success rates on five well-known open-source LLMs in the context of AdvBench.
arXiv Detail & Related papers (2024-11-03T13:36:34Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
We propose a novel method that "translates" garbled adversarial prompts into coherent and human-readable natural language adversarial prompts.
It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks.
Our method achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks.
arXiv Detail & Related papers (2024-10-15T06:31:04Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
Large Language Models (LLMs) are increasingly being deployed in safety-critical applications.
LLMs can still be jailbroken by carefully crafted malicious prompts, producing content that violates policy regulations.
We propose a novel EnJa attack to hide harmful instructions using prompt-level jailbreak, boost the attack success rate using a gradient-based attack, and connect the two types of jailbreak attacks via a template-based connector.
arXiv Detail & Related papers (2024-08-07T07:46:08Z) - Jailbreaking Large Language Models Through Alignment Vulnerabilities in Out-of-Distribution Settings [57.136748215262884]
We introduce ObscurePrompt for jailbreaking LLMs, inspired by the observed fragile alignments in Out-of-Distribution (OOD) data.<n>We first formulate the decision boundary in the jailbreaking process and then explore how obscure text affects LLM's ethical decision boundary.<n>Our approach substantially improves upon previous methods in terms of attack effectiveness, maintaining efficacy against two prevalent defense mechanisms.
arXiv Detail & Related papers (2024-06-19T16:09:58Z) - Knowledge-to-Jailbreak: One Knowledge Point Worth One Attack [86.6931690001357]
Knowledge-to-jailbreak aims to generate jailbreaks from domain knowledge to evaluate the safety of large language models on specialized domains.
We collect a large-scale dataset with 12,974 knowledge-jailbreak pairs and fine-tune a large language model as jailbreak-generator.
arXiv Detail & Related papers (2024-06-17T15:59:59Z) - Understanding Jailbreak Success: A Study of Latent Space Dynamics in Large Language Models [4.547063832007314]
It is possible to extract a jailbreak vector from a single class of jailbreaks that works to mitigate jailbreak effectiveness from other semantically-dissimilar classes.
We investigate a potential common mechanism of harmfulness feature suppression, and find evidence that effective jailbreaks noticeably reduce a model's perception of prompt harmfulness.
arXiv Detail & Related papers (2024-06-13T16:26:47Z) - GPT-4 Jailbreaks Itself with Near-Perfect Success Using Self-Explanation [9.377563769107843]
We introduce Iterative Refinement Induced Self-Jailbreak (IRIS), a novel approach to jailbreaking with only black-box access.
Unlike previous methods, IRIS simplifies the jailbreaking process by using a single model as both the attacker and target.
We find that IRIS jailbreak success rates of 98% on GPT-4, 92% on GPT-4 Turbo, and 94% on Llama-3.1-70B in under 7 queries.
arXiv Detail & Related papers (2024-05-21T03:16:35Z) - EasyJailbreak: A Unified Framework for Jailbreaking Large Language Models [53.87416566981008]
This paper introduces EasyJailbreak, a unified framework simplifying the construction and evaluation of jailbreak attacks against Large Language Models (LLMs)
It builds jailbreak attacks using four components: Selector, Mutator, Constraint, and Evaluator.
Our validation across 10 distinct LLMs reveals a significant vulnerability, with an average breach probability of 60% under various jailbreaking attacks.
arXiv Detail & Related papers (2024-03-18T18:39:53Z) - Comprehensive Assessment of Jailbreak Attacks Against LLMs [28.58973312098698]
We study 13 cutting-edge jailbreak methods from four categories, 160 questions from 16 violation categories, and six popular LLMs.
Our experimental results demonstrate that the optimized jailbreak prompts consistently achieve the highest attack success rates.
We discuss the trade-off between the attack performance and efficiency, as well as show that the transferability of the jailbreak prompts is still viable.
arXiv Detail & Related papers (2024-02-08T13:42:50Z) - Jailbreaking GPT-4V via Self-Adversarial Attacks with System Prompts [64.60375604495883]
We discover a system prompt leakage vulnerability in GPT-4V.
By employing GPT-4 as a red teaming tool against itself, we aim to search for potential jailbreak prompts leveraging stolen system prompts.
We also evaluate the effect of modifying system prompts to defend against jailbreaking attacks.
arXiv Detail & Related papers (2023-11-15T17:17:39Z) - "Do Anything Now": Characterizing and Evaluating In-The-Wild Jailbreak Prompts on Large Language Models [50.22128133926407]
We conduct a comprehensive analysis of 1,405 jailbreak prompts spanning from December 2022 to December 2023.
We identify 131 jailbreak communities and discover unique characteristics of jailbreak prompts and their major attack strategies.
We identify five highly effective jailbreak prompts that achieve 0.95 attack success rates on ChatGPT (GPT-3.5) and GPT-4.
arXiv Detail & Related papers (2023-08-07T16:55:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.