論文の概要: What is to be gained by ensemble models in analysis of spectroscopic data?
- arxiv url: http://arxiv.org/abs/2404.02184v1
- Date: Tue, 2 Apr 2024 15:28:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 19:38:40.508852
- Title: What is to be gained by ensemble models in analysis of spectroscopic data?
- Title(参考訳): 分光データ分析におけるアンサンブルモデルから得られるものは何か?
- Authors: Katarina Domijan,
- Abstract要約: 分光データの予測を改善することを目的としたアンサンブルモデルの異なる実装を比較するための実験的検討を行った。
線形混合モデルを用いた統計的解析は、データのランダムな分割に対するモデル適合から得られる予測性能基準に基づいて行われた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An empirical study was carried out to compare different implementations of ensemble models aimed at improving prediction in spectroscopic data. A wide range of candidate models were fitted to benchmark datasets from regression and classification settings. A statistical analysis using linear mixed model was carried out on prediction performance criteria resulting from model fits over random splits of the data. The results showed that the ensemble classifiers were able to consistently outperform candidate models in our application
- Abstract(参考訳): 分光データの予測を改善することを目的としたアンサンブルモデルの異なる実装を比較するための実験的検討を行った。
幅広い候補モデルが回帰と分類設定からベンチマークデータセットに適合した。
線形混合モデルを用いた統計的解析は、データのランダムな分割に対するモデル適合から得られる予測性能基準に基づいて行われた。
その結果,アンサンブル分類器はアプリケーションの候補モデルより一貫して優れていた。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - Finite Mixtures of Multivariate Poisson-Log Normal Factor Analyzers for
Clustering Count Data [0.8499685241219366]
因子分析モデルの混合に基づく8種類の擬似混合モデルについて紹介する。
提案モデルはRNAシークエンシング研究から得られた離散的なデータをクラスタリングする文脈において探索される。
論文 参考訳(メタデータ) (2023-11-13T21:23:15Z) - Empirical Analysis of Model Selection for Heterogeneous Causal Effect Estimation [24.65301562548798]
本研究では,因果推論におけるモデル選択の問題,特に条件付き平均処理効果(CATE)の推定について検討する。
本研究では,本研究で導入されたサロゲートモデル選択指標と,本研究で導入された新しい指標のベンチマークを行う。
論文 参考訳(メタデータ) (2022-11-03T16:26:06Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - Using Explainable Boosting Machine to Compare Idiographic and Nomothetic
Approaches for Ecological Momentary Assessment Data [2.0824228840987447]
本稿では,非線形解釈型機械学習(ML)モデルを用いた分類問題について検討する。
木々の様々なアンサンブルは、不均衡な合成データセットと実世界のデータセットを用いて線形モデルと比較される。
2つの実世界のデータセットのうちの1つで、知識蒸留法は改善されたAUCスコアを達成する。
論文 参考訳(メタデータ) (2022-04-04T17:56:37Z) - Training Experimentally Robust and Interpretable Binarized Regression
Models Using Mixed-Integer Programming [3.179831861897336]
マルチクラス分類タスクに対するロバストかつ解釈可能な二項化回帰モデルをトレーニングするためのモデルに基づくアプローチを提案する。
MIPモデルは、重み付けされた目的を用いて予測マージンとモデルサイズを最適化する。
MIPを用いた頑健かつ解釈可能な二項化回帰モデルのトレーニングの有効性を示す。
論文 参考訳(メタデータ) (2021-12-01T11:53:08Z) - Nonparametric Functional Analysis of Generalized Linear Models Under
Nonlinear Constraints [0.0]
本稿では、一般化線形モデルのための新しい非パラメトリック方法論を紹介する。
これは二項回帰の強さとカテゴリーデータに対する潜在変数の定式化の強さを組み合わせたものである。
これは最近公開された方法論のパラメトリックバージョンを拡張し、一般化する。
論文 参考訳(メタデータ) (2021-10-11T04:49:59Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。