論文の概要: Photonic quantum walk with ultrafast time-bin encoding
- arxiv url: http://arxiv.org/abs/2404.02238v1
- Date: Tue, 2 Apr 2024 18:49:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 19:28:46.507078
- Title: Photonic quantum walk with ultrafast time-bin encoding
- Title(参考訳): 超高速時間ビン符号化によるフォトニック量子ウォーク
- Authors: Kate L. Fenwick, Frédéric Bouchard, Duncan England, Philip J. Bustard, Khabat Heshami, Benjamin Sussman,
- Abstract要約: 超高速な時間ビン符号化方式を用いて量子ウォークを行う新しいプラットフォームを提案する。
このプラットフォームは、多くのステップに量子ウォークのスケーラビリティをサポートしながら、かなりのプログラム可能性を維持している。
我々の18段階QWは50時間にわたって干渉位相安定性を保っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum walk (QW) has proven to be a valuable testbed for fundamental inquiries in quantum technology applications such as quantum simulation and quantum search algorithms. Many benefits have been found by exploring implementations of QWs in various physical systems, including photonic platforms. Here, we propose a novel platform to perform quantum walks using an ultrafast time-bin encoding (UTBE) scheme. This platform supports the scalability of quantum walks to a large number of steps while retaining a significant degree of programmability. More importantly, ultrafast time bins are encoded at the picosecond time scale, far away from mechanical fluctuations. This enables the scalability of our platform to many modes while preserving excellent interferometric phase stability over extremely long periods of time without requiring active phase stabilization. Our 18-step QW is shown to preserve interferometric phase stability over a period of 50 hours, with an overall walk fidelity maintained above $95\%$
- Abstract(参考訳): 量子ウォーク(QW)は、量子シミュレーションや量子サーチアルゴリズムなどの量子技術応用における基礎的な問いに対する貴重なテストベッドであることが証明されている。
フォトニックプラットフォームを含む様々な物理システムにおけるQWの実装を探索することで、多くの利点が得られた。
本稿では,超高速時間ビン符号化(UTBE)方式を用いて,量子ウォークを行う新しいプラットフォームを提案する。
このプラットフォームは、多くのステップに量子ウォークのスケーラビリティをサポートしながら、かなりのプログラム可能性を維持している。
さらに重要なのは、超高速な時間ビンは、機械的変動から遠く離れたピコ秒の時間スケールで符号化されることだ。
これにより、能動的な位相安定化を必要とせず、非常に長い時間にわたって優れた干渉位相安定性を維持しながら、プラットフォームを多くのモードに拡張することができる。
我々の18ステップQWは、50時間以上の干渉位相安定性を保ち、全体的な歩行忠実度は9,5\%以上である。
関連論文リスト
- Robust Implementation of Discrete-time Quantum Walks in Any Finite-dimensional Quantum System [2.646968944595457]
離散時間量子ウォーク(DTQW)は、回路実装に最も適した選択の1つである。
本稿では,ゲート数および回路深さに関する回路コストを半減することに成功した。
提案手法の工学的卓越性には、近似効率を持つ任意の有限次元量子系にDTQWを実装している。
論文 参考訳(メタデータ) (2024-08-01T13:07:13Z) - On Reducing the Execution Latency of Superconducting Quantum Processors via Quantum Program Scheduling [48.142860424323395]
本稿では,量子資源の利用効率を向上させるためにQPSP(Quantum Program Scheduling Problem)を導入する。
具体的には, 回路幅, 計測ショット数, 提出時間に関する量子プログラムスケジューリング手法を提案し, 実行遅延を低減する。
論文 参考訳(メタデータ) (2024-04-11T16:12:01Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Combining Matrix Product States and Noisy Quantum Computers for Quantum
Simulation [0.0]
行列生成状態(MPS)と演算子(MPO)は、量子多体系を研究するための強力なツールであることが証明されている。
テンソルネットワークの形で古典的な知識を用いることで、制限された量子資源をよりよく活用できることを示す。
論文 参考訳(メタデータ) (2023-05-30T17:21:52Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
長距離における量子状態の絡み合いは、量子コンピューティング、量子通信、および量子センシングを増強することができる。
過去20年間で、高忠実度、高効率、長期保存、有望な多重化機能を備えた量子光学記憶が開発された。
論文 参考訳(メタデータ) (2023-04-19T03:18:51Z) - Steering of Quantum Walks through Coherent Control of High-dimensional
Bi-photon Quantum Frequency Combs with Tunable State Entropies [0.0]
我々は、周期的に偏極したニオブ酸リチウム導波路から可変エントロピーを持つ高次元量子フォトニック状態を生成する。
これらの状態は、非理想的なシナリオにおけるいくつかの量子計算および通信プロトコルのための優れたテストベッドとなり得る。
論文 参考訳(メタデータ) (2022-10-12T15:14:19Z) - Large-scale full-programmable quantum walk and its applications [18.832850380803333]
量子ウォークは、新しい有用な量子アルゴリズムを開発するための強力なカーネルである。
ここでは、完全プログラム可能なフォトニック量子コンピューティングシステムを用いて、大規模量子ウォークを実現する。
400次元ヒルベルト空間では、オンチップ回路の進化後のランダム絡み合った量子状態の平均忠実度は94.29$pm$1.28$%である。
論文 参考訳(メタデータ) (2022-08-28T09:36:32Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
実世界の展開とスケーリングの課題に対応するために設計された量子メモリを提示する。
メモリ技術は、温かいルビジウム蒸気を記憶媒体として利用し、室温で動作する。
我々は,高忠実度検索(95%)と低演算誤差(10-2)$を,単一光子レベルの量子メモリ操作に対して160$mu s$の記憶時間で示す。
論文 参考訳(メタデータ) (2022-05-26T00:33:13Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
想像時間における進化は、量子多体系の基底状態を見つけるための顕著な技術である。
本稿では,量子コンピュータ上での仮想時間伝搬を実現するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-24T12:48:00Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。