Comparative Study of Domain Driven Terms Extraction Using Large Language Models
- URL: http://arxiv.org/abs/2404.02330v1
- Date: Tue, 2 Apr 2024 22:04:51 GMT
- Title: Comparative Study of Domain Driven Terms Extraction Using Large Language Models
- Authors: Sandeep Chataut, Tuyen Do, Bichar Dip Shrestha Gurung, Shiva Aryal, Anup Khanal, Carol Lushbough, Etienne Gnimpieba,
- Abstract summary: Keywords play a crucial role in bridging the gap between human understanding and machine processing of textual data.
This review focuses on keyword extraction methods, emphasizing the use of three major Large Language Models (LLMs): Llama2-7B, GPT-3.5, and Falcon-7B.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Keywords play a crucial role in bridging the gap between human understanding and machine processing of textual data. They are essential to data enrichment because they form the basis for detailed annotations that provide a more insightful and in-depth view of the underlying data. Keyword/domain driven term extraction is a pivotal task in natural language processing, facilitating information retrieval, document summarization, and content categorization. This review focuses on keyword extraction methods, emphasizing the use of three major Large Language Models(LLMs): Llama2-7B, GPT-3.5, and Falcon-7B. We employed a custom Python package to interface with these LLMs, simplifying keyword extraction. Our study, utilizing the Inspec and PubMed datasets, evaluates the performance of these models. The Jaccard similarity index was used for assessment, yielding scores of 0.64 (Inspec) and 0.21 (PubMed) for GPT-3.5, 0.40 and 0.17 for Llama2-7B, and 0.23 and 0.12 for Falcon-7B. This paper underlines the role of prompt engineering in LLMs for better keyword extraction and discusses the impact of hallucination in LLMs on result evaluation. It also sheds light on the challenges in using LLMs for keyword extraction, including model complexity, resource demands, and optimization techniques.
Related papers
- Towards Enhancing Coherence in Extractive Summarization: Dataset and Experiments with LLMs [70.15262704746378]
We propose a systematically created human-annotated dataset consisting of coherent summaries for five publicly available datasets and natural language user feedback.
Preliminary experiments with Falcon-40B and Llama-2-13B show significant performance improvements (10% Rouge-L) in terms of producing coherent summaries.
arXiv Detail & Related papers (2024-07-05T20:25:04Z) - Assessing LLMs for Zero-shot Abstractive Summarization Through the Lens of Relevance Paraphrasing [37.400757839157116]
Large Language Models (LLMs) have achieved state-of-the-art performance at zero-shot generation of abstractive summaries for given articles.
We propose relevance paraphrasing, a simple strategy that can be used to measure the robustness of LLMs as summarizers.
arXiv Detail & Related papers (2024-06-06T12:08:43Z) - LexMatcher: Dictionary-centric Data Collection for LLM-based Machine Translation [67.24113079928668]
We present LexMatcher, a method for data curation driven by the coverage of senses found in bilingual dictionaries.
Our approach outperforms the established baselines on the WMT2022 test sets.
arXiv Detail & Related papers (2024-06-03T15:30:36Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - Using Large Language Models to Enrich the Documentation of Datasets for Machine Learning [1.8270184406083445]
We explore using large language models (LLM) and prompting strategies to automatically extract dimensions from documents.
Our approach could aid data publishers and practitioners in creating machine-readable documentation.
We have released an open-source tool implementing our approach and a replication package, including the experiments' code and results.
arXiv Detail & Related papers (2024-04-04T10:09:28Z) - TriSum: Learning Summarization Ability from Large Language Models with Structured Rationale [66.01943465390548]
We introduce TriSum, a framework for distilling large language models' text summarization abilities into a compact, local model.
Our method enhances local model performance on various benchmarks.
It also improves interpretability by providing insights into the summarization rationale.
arXiv Detail & Related papers (2024-03-15T14:36:38Z) - Zero-Shot Topic Classification of Column Headers: Leveraging LLMs for Metadata Enrichment [0.0]
We propose a method to support metadata enrichment using topic annotations generated by three Large Language Models (LLMs): ChatGPT-3.5, GoogleBard, and GoogleGemini.
We evaluate the impact of contextual information (i.e., dataset description) on the classification outcomes.
arXiv Detail & Related papers (2024-03-01T10:01:36Z) - ExaRanker-Open: Synthetic Explanation for IR using Open-Source LLMs [60.81649785463651]
We introduce ExaRanker-Open, where we adapt and explore the use of open-source language models to generate explanations.
Our findings reveal that incorporating explanations consistently enhances neural rankers, with benefits escalating as the LLM size increases.
arXiv Detail & Related papers (2024-02-09T11:23:14Z) - LLM-TAKE: Theme Aware Keyword Extraction Using Large Language Models [10.640773460677542]
We explore using Large Language Models (LLMs) in generating keywords for items that are inferred from the items textual metadata.
Our modeling framework includes several stages to fine grain the results by avoiding outputting keywords that are non informative or sensitive.
We propose two variations of framework for generating extractive and abstractive themes for products in an E commerce setting.
arXiv Detail & Related papers (2023-12-01T20:13:08Z) - Text Summarization Using Large Language Models: A Comparative Study of
MPT-7b-instruct, Falcon-7b-instruct, and OpenAI Chat-GPT Models [0.0]
Leveraging Large Language Models (LLMs) has shown remarkable promise in enhancing summarization techniques.
This paper embarks on an exploration of text summarization with a diverse set of LLMs, including MPT-7b-instruct, falcon-7b-instruct, and OpenAI ChatGPT text-davinci-003 models.
arXiv Detail & Related papers (2023-10-16T14:33:02Z) - AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators [98.11286353828525]
GPT-3.5 series models have demonstrated remarkable few-shot and zero-shot ability across various NLP tasks.
We propose AnnoLLM, which adopts a two-step approach, explain-then-annotate.
We build the first conversation-based information retrieval dataset employing AnnoLLM.
arXiv Detail & Related papers (2023-03-29T17:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.