Attribution Regularization for Multimodal Paradigms
- URL: http://arxiv.org/abs/2404.02359v1
- Date: Tue, 2 Apr 2024 23:05:56 GMT
- Title: Attribution Regularization for Multimodal Paradigms
- Authors: Sahiti Yerramilli, Jayant Sravan Tamarapalli, Jonathan Francis, Eric Nyberg,
- Abstract summary: Multimodal machine learning can integrate information from multiple modalities to enhance learning and decision-making processes.
It is commonly observed that unimodal models outperform multimodal models, despite the latter having access to richer information.
This research project proposes a novel regularization term that encourages multimodal models to effectively utilize information from all modalities when making decisions.
- Score: 7.1262539590168705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal machine learning has gained significant attention in recent years due to its potential for integrating information from multiple modalities to enhance learning and decision-making processes. However, it is commonly observed that unimodal models outperform multimodal models, despite the latter having access to richer information. Additionally, the influence of a single modality often dominates the decision-making process, resulting in suboptimal performance. This research project aims to address these challenges by proposing a novel regularization term that encourages multimodal models to effectively utilize information from all modalities when making decisions. The focus of this project lies in the video-audio domain, although the proposed regularization technique holds promise for broader applications in embodied AI research, where multiple modalities are involved. By leveraging this regularization term, the proposed approach aims to mitigate the issue of unimodal dominance and improve the performance of multimodal machine learning systems. Through extensive experimentation and evaluation, the effectiveness and generalizability of the proposed technique will be assessed. The findings of this research project have the potential to significantly contribute to the advancement of multimodal machine learning and facilitate its application in various domains, including multimedia analysis, human-computer interaction, and embodied AI research.
Related papers
- HEMM: Holistic Evaluation of Multimodal Foundation Models [91.60364024897653]
Multimodal foundation models can holistically process text alongside images, video, audio, and other sensory modalities.
It is challenging to characterize and study progress in multimodal foundation models, given the range of possible modeling decisions, tasks, and domains.
arXiv Detail & Related papers (2024-07-03T18:00:48Z) - From Efficient Multimodal Models to World Models: A Survey [28.780451336834876]
Multimodal Large Models (MLMs) are becoming a significant research focus combining powerful language models with multimodal learning.
This review explores the latest developments and challenges in large instructions, emphasizing their potential in achieving artificial general intelligence.
arXiv Detail & Related papers (2024-06-27T15:36:43Z) - Large Multimodal Agents: A Survey [78.81459893884737]
Large language models (LLMs) have achieved superior performance in powering text-based AI agents.
There is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain.
This review aims to provide valuable insights and guidelines for future research in this rapidly evolving field.
arXiv Detail & Related papers (2024-02-23T06:04:23Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
We propose MLA (Multimodal Learning with Alternating Unimodal Adaptation) to overcome challenges where some modalities appear more dominant than others during multimodal learning.
MLA reframes the conventional joint multimodal learning process by transforming it into an alternating unimodal learning process.
It captures cross-modal interactions through a shared head, which undergoes continuous optimization across different modalities.
Experiments are conducted on five diverse datasets, encompassing scenarios with complete modalities and scenarios with missing modalities.
arXiv Detail & Related papers (2023-11-17T18:57:40Z) - Modality Influence in Multimodal Machine Learning [0.0]
The study examines Multimodal Sentiment Analysis, Multimodal Emotion Recognition, Multimodal Hate Speech Recognition, and Multimodal Disease Detection.
The research aims to identify the most influential modality or set of modalities for each task and draw conclusions for diverse multimodal classification tasks.
arXiv Detail & Related papers (2023-06-10T16:28:52Z) - Quantifying & Modeling Multimodal Interactions: An Information
Decomposition Framework [89.8609061423685]
We propose an information-theoretic approach to quantify the degree of redundancy, uniqueness, and synergy relating input modalities with an output task.
To validate PID estimation, we conduct extensive experiments on both synthetic datasets where the PID is known and on large-scale multimodal benchmarks.
We demonstrate their usefulness in (1) quantifying interactions within multimodal datasets, (2) quantifying interactions captured by multimodal models, (3) principled approaches for model selection, and (4) three real-world case studies.
arXiv Detail & Related papers (2023-02-23T18:59:05Z) - Multimodality Representation Learning: A Survey on Evolution,
Pretraining and Its Applications [47.501121601856795]
Multimodality Representation Learning is a technique of learning to embed information from different modalities and their correlations.
Cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task.
This survey presents the literature on the evolution and enhancement of deep learning multimodal architectures.
arXiv Detail & Related papers (2023-02-01T11:48:34Z) - SHAPE: An Unified Approach to Evaluate the Contribution and Cooperation
of Individual Modalities [7.9602600629569285]
We use bf SHapley vbf Alue-based bf PErceptual (SHAPE) scores to measure the marginal contribution of individual modalities and the degree of cooperation across modalities.
Our experiments suggest that for some tasks where different modalities are complementary, the multi-modal models still tend to use the dominant modality alone.
We hope our scores can help improve the understanding of how the present multi-modal models operate on different modalities and encourage more sophisticated methods of integrating multiple modalities.
arXiv Detail & Related papers (2022-04-30T16:35:40Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - MultiBench: Multiscale Benchmarks for Multimodal Representation Learning [87.23266008930045]
MultiBench is a systematic and unified benchmark spanning 15 datasets, 10 modalities, 20 prediction tasks, and 6 research areas.
It provides an automated end-to-end machine learning pipeline that simplifies and standardizes data loading, experimental setup, and model evaluation.
It introduces impactful challenges for future research, including robustness to large-scale multimodal datasets and robustness to realistic imperfections.
arXiv Detail & Related papers (2021-07-15T17:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.