Decoding the Multimodal Maze: A Systematic Review on the Adoption of Explainability in Multimodal Attention-based Models
- URL: http://arxiv.org/abs/2508.04427v1
- Date: Wed, 06 Aug 2025 13:14:20 GMT
- Title: Decoding the Multimodal Maze: A Systematic Review on the Adoption of Explainability in Multimodal Attention-based Models
- Authors: Md Raisul Kibria, Sébastien Lafond, Janan Arslan,
- Abstract summary: This systematic literature review analyzes research published between January 2020 and early 2024 that focuses on the explainability of multimodal models.<n>We find that evaluation methods for XAI in multimodal settings are largely non-systematic, lacking consistency, robustness, and consideration for modality-specific cognitive and contextual factors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal learning has witnessed remarkable advancements in recent years, particularly with the integration of attention-based models, leading to significant performance gains across a variety of tasks. Parallel to this progress, the demand for explainable artificial intelligence (XAI) has spurred a growing body of research aimed at interpreting the complex decision-making processes of these models. This systematic literature review analyzes research published between January 2020 and early 2024 that focuses on the explainability of multimodal models. Framed within the broader goals of XAI, we examine the literature across multiple dimensions, including model architecture, modalities involved, explanation algorithms and evaluation methodologies. Our analysis reveals that the majority of studies are concentrated on vision-language and language-only models, with attention-based techniques being the most commonly employed for explanation. However, these methods often fall short in capturing the full spectrum of interactions between modalities, a challenge further compounded by the architectural heterogeneity across domains. Importantly, we find that evaluation methods for XAI in multimodal settings are largely non-systematic, lacking consistency, robustness, and consideration for modality-specific cognitive and contextual factors. Based on these findings, we provide a comprehensive set of recommendations aimed at promoting rigorous, transparent, and standardized evaluation and reporting practices in multimodal XAI research. Our goal is to support future research in more interpretable, accountable, and responsible mulitmodal AI systems, with explainability at their core.
Related papers
- Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing.<n>Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest.<n>This survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
arXiv Detail & Related papers (2025-06-11T03:29:18Z) - Perception, Reason, Think, and Plan: A Survey on Large Multimodal Reasoning Models [79.52467430114805]
Reasoning lies at the heart of intelligence, shaping the ability to make decisions, draw conclusions, and generalize across domains.<n>In artificial intelligence, as systems increasingly operate in open, uncertain, and multimodal environments, reasoning becomes essential for enabling robust and adaptive behavior.<n>Large Multimodal Reasoning Models (LMRMs) have emerged as a promising paradigm, integrating modalities such as text, images, audio, and video to support complex reasoning capabilities.
arXiv Detail & Related papers (2025-05-08T03:35:23Z) - Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1) [66.51642638034822]
Reasoning is central to human intelligence, enabling structured problem-solving across diverse tasks.<n>Recent advances in large language models (LLMs) have greatly enhanced their reasoning abilities in arithmetic, commonsense, and symbolic domains.<n>This paper offers a concise yet insightful overview of reasoning techniques in both textual and multimodal LLMs.
arXiv Detail & Related papers (2025-04-04T04:04:56Z) - Multimodal Chain-of-Thought Reasoning: A Comprehensive Survey [124.23247710880008]
multimodal CoT (MCoT) reasoning has recently garnered significant research attention.<n>Existing MCoT studies design various methodologies to address the challenges of image, video, speech, audio, 3D, and structured data.<n>We present the first systematic survey of MCoT reasoning, elucidating the relevant foundational concepts and definitions.
arXiv Detail & Related papers (2025-03-16T18:39:13Z) - A Survey on Mechanistic Interpretability for Multi-Modal Foundation Models [74.48084001058672]
The rise of foundation models has transformed machine learning research.<n> multimodal foundation models (MMFMs) pose unique interpretability challenges beyond unimodal frameworks.<n>This survey explores two key aspects: (1) the adaptation of LLM interpretability methods to multimodal models and (2) understanding the mechanistic differences between unimodal language models and crossmodal systems.
arXiv Detail & Related papers (2025-02-22T20:55:26Z) - Explainable and Interpretable Multimodal Large Language Models: A Comprehensive Survey [46.617998833238126]
Large language models (LLMs) and computer vision (CV) systems driving advancements in natural language understanding and visual processing.<n>The convergence of these technologies has catalyzed the rise of multimodal AI, enabling richer, cross-modal understanding that spans text, vision, audio, and video modalities.<n>Multimodal large language models (MLLMs) have emerged as a powerful framework, demonstrating impressive capabilities in tasks like image-text generation, visual question answering, and cross-modal retrieval.<n>Despite these advancements, the complexity and scale of MLLMs introduce significant challenges in interpretability and explainability, essential for establishing
arXiv Detail & Related papers (2024-12-03T02:54:31Z) - A Survey on Multimodal Benchmarks: In the Era of Large AI Models [13.299775710527962]
Multimodal Large Language Models (MLLMs) have brought substantial advancements in artificial intelligence.
This survey systematically reviews 211 benchmarks that assess MLLMs across four core domains: understanding, reasoning, generation, and application.
arXiv Detail & Related papers (2024-09-21T15:22:26Z) - Attribution Regularization for Multimodal Paradigms [7.1262539590168705]
Multimodal machine learning can integrate information from multiple modalities to enhance learning and decision-making processes.<n>It is commonly observed that unimodal models outperform multimodal models, despite the latter having access to richer information.<n>This research project proposes a novel regularization term that encourages multimodal models to effectively utilize information from all modalities when making decisions.
arXiv Detail & Related papers (2024-04-02T23:05:56Z) - Multimodal Explainable Artificial Intelligence: A Comprehensive Review of Methodological Advances and Future Research Directions [2.35574869517894]
This study focuses on analyzing the recent advances in the area of Multimodal XAI (MXAI)
MXAI comprises methods that involve multiple modalities in the primary prediction and explanation tasks.
arXiv Detail & Related papers (2023-06-09T07:51:50Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.