論文の概要: Task Agnostic Architecture for Algorithm Induction via Implicit Composition
- arxiv url: http://arxiv.org/abs/2404.02450v1
- Date: Wed, 3 Apr 2024 04:31:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 18:39:40.460292
- Title: Task Agnostic Architecture for Algorithm Induction via Implicit Composition
- Title(参考訳): 入出力合成によるアルゴリズム誘導のためのタスク非依存アーキテクチャ
- Authors: Sahil J. Sindhi, Ignas Budvytis,
- Abstract要約: 本研究の目的は,このような統一アーキテクチャの構築を探求することであり,その構築方法に関する理論的枠組みを提案することである。
最近のジェネレーティブAI、特にトランスフォーマーベースのモデルは、幅広い領域のアルゴリズムを構築することができるアーキテクチャとしての可能性を示している。
アルゴリズム合成におけるトランスフォーマーおよび他の手法の現在の機能と限界について検討する。
- 参考スコア(独自算出の注目度): 10.627575117586417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Different fields in applied machine learning such as computer vision, speech or natural language processing have been building domain-specialised solutions. Currently, we are witnessing an opposing trend towards developing more generalist architectures, driven by Large Language Models and multi-modal foundational models. These architectures are designed to tackle a variety of tasks, including those previously unseen and using inputs across multiple modalities. Taking this trend of generalization to the extreme suggests the possibility of a single deep network architecture capable of solving all tasks. This position paper aims to explore developing such a unified architecture and proposes a theoretical framework of how it could be constructed. Our proposal is based on the following assumptions. Firstly, tasks are solved by following a sequence of instructions, typically implemented in code for conventional computing hardware, which inherently operates sequentially. Second, recent Generative AI, especially Transformer-based models, demonstrate potential as an architecture capable of constructing algorithms for a wide range of domains. For example, GPT-4 shows exceptional capability at in-context learning of novel tasks which is hard to explain in any other way than the ability to compose novel solutions from fragments on previously learnt algorithms. Third, the observation that the main missing component in developing a truly generalised network is an efficient approach for self-consistent input of previously learnt sub-steps of an algorithm and their (implicit) composition during the network's internal forward pass. Our exploration delves into current capabilities and limitations of Transformer-based and other methods in efficient and correct algorithm composition and proposes a Transformer-like architecture as well as a discrete learning framework to overcome these limitations.
- Abstract(参考訳): コンピュータビジョン、音声、自然言語処理などの応用機械学習の分野は、ドメイン特化ソリューションを構築している。
現在、我々は、大規模言語モデルとマルチモーダル基礎モデルによって駆動される、より汎用的なアーキテクチャの開発に対する反対の傾向を目撃しています。
これらのアーキテクチャは、以前は見つからず、複数のモダリティにまたがる入力を使用するものを含む、さまざまなタスクに取り組むように設計されている。
この一般化の傾向を極端に考えると、すべてのタスクを解くことができる単一のディープネットワークアーキテクチャの可能性が示唆される。
本研究の目的は,このような統一アーキテクチャの構築を探求することであり,その構築方法に関する理論的枠組みを提案することである。
我々の提案は以下の前提に基づいている。
第一に、タスクは、典型的にはシーケンシャルに動作する従来のコンピューティングハードウェアのコードで実装される一連の命令に従うことで解決される。
第二に、最近のジェネレーティブAI、特にトランスフォーマーベースのモデルは、幅広い領域のアルゴリズムを構築することができるアーキテクチャとしての可能性を示している。
例えば、GPT-4は、以前に学習したアルゴリズム上のフラグメントから新しいソリューションを構成する能力以外に、説明が難しい新しいタスクのコンテキスト内学習において、例外的な能力を示す。
第三に、真に一般化されたネットワークを開発する上で欠落する主な要素は、ネットワークの内部フォワードパスにおいて、アルゴリズムの学習したサブステップとその(単純)構成を自己整合的に入力するための効率的なアプローチである。
本研究は,トランスフォーマーをベースとしたアルゴリズム合成における現在の機能と限界を考察し,これらの制約を克服するための離散学習フレームワークとして,トランスフォーマーのようなアーキテクチャを提案する。
関連論文リスト
- Training Neural Networks with Internal State, Unconstrained
Connectivity, and Discrete Activations [66.53734987585244]
真のインテリジェンスには、内部状態を管理するマシンラーニングモデルが必要だ。
このようなモデルのトレーニングに最も効果的なアルゴリズムは,まだ発見されていない。
このようなトレーニングアルゴリズムを2進アクティベーションと1つの重みの行列のみを持つアーキテクチャに適用する試みについて述べる。
論文 参考訳(メタデータ) (2023-12-22T01:19:08Z) - A Generalist Neural Algorithmic Learner [18.425083543441776]
我々は、幅広いアルゴリズムを実行することを学習できる単一のグラフニューラルネットワークプロセッサを構築している。
マルチタスク方式でアルゴリズムを効果的に学習できることを示す。
論文 参考訳(メタデータ) (2022-09-22T16:41:33Z) - Policy Architectures for Compositional Generalization in Control [71.61675703776628]
本稿では,タスクにおけるエンティティベースの構成構造をモデル化するためのフレームワークを提案する。
私たちのポリシーは柔軟で、アクションプリミティブを必要とせずにエンドツーエンドでトレーニングできます。
論文 参考訳(メタデータ) (2022-03-10T06:44:24Z) - Learning Interpretable Models Through Multi-Objective Neural
Architecture Search [0.9990687944474739]
本稿では,タスク性能と「イントロスペクタビリティ」の両方を最適化するフレームワークを提案する。
タスクエラーとイントロスペクタビリティを共同で最適化することは、エラー内で実行されるより不整合でデバッグ可能なアーキテクチャをもたらすことを実証する。
論文 参考訳(メタデータ) (2021-12-16T05:50:55Z) - Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges [50.22269760171131]
過去10年間、データサイエンスと機械学習の実験的な革命が、ディープラーニングの手法によって生まれた。
このテキストは、統一幾何学的原理によって事前に定義された規則性を公開することに関するものである。
CNN、RNN、GNN、Transformersなど、最も成功したニューラルネットワークアーキテクチャを研究するための一般的な数学的フレームワークを提供する。
論文 参考訳(メタデータ) (2021-04-27T21:09:51Z) - Explainability-aided Domain Generalization for Image Classification [0.0]
説明可能性文献から手法やアーキテクチャを適用することで、ドメインの一般化という困難な課題に対して最先端のパフォーマンスを達成できることを示す。
そこで我々は,勾配に基づくクラスアクティベーションマップを用いて学習中にネットワークが指導を受ける手法であるDivCAMを含む新しいアルゴリズムを開発し,多様な識別機能に焦点をあてる。
これらの手法は、説明可能性に加えて競合性能を提供するため、深層ニューラルネットワークアーキテクチャのロバスト性を改善するツールとして使用できると論じる。
論文 参考訳(メタデータ) (2021-04-05T02:27:01Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
機械学習やコンピュータビジョンの分野では、モチベーションやメカニズムが異なるにもかかわらず、複雑な問題の多くは、一連の密接に関連するサブプロトコルを含んでいる。
本稿では,BLO(Bi-Level Optimization)の観点から,これらの複雑な学習と視覚問題を一様に表現する。
次に、値関数に基づく単一レベル再構成を構築し、主流勾配に基づくBLO手法を理解し、定式化するための統一的なアルゴリズムフレームワークを確立する。
論文 参考訳(メタデータ) (2021-01-27T16:20:23Z) - Automated Search for Resource-Efficient Branched Multi-Task Networks [81.48051635183916]
我々は,多タスクニューラルネットワークにおける分岐構造を自動的に定義する,微分可能なニューラルネットワーク探索に根ざした原理的アプローチを提案する。
本手法は,限られた資源予算内で高い性能の分岐構造を見いだすことができる。
論文 参考訳(メタデータ) (2020-08-24T09:49:19Z) - Learning to Stop While Learning to Predict [85.7136203122784]
多くのアルゴリズムにインスパイアされたディープモデルは全ての入力に対して固定深度に制限される。
アルゴリズムと同様に、深いアーキテクチャの最適深さは、異なる入力インスタンスに対して異なるかもしれない。
本稿では, ステアブルアーキテクチャを用いて, この様々な深さ問題に対処する。
学習した深層モデルと停止ポリシーにより,多様なタスクセットのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2020-06-09T07:22:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。