論文の概要: Adaptive Cross-lingual Text Classification through In-Context One-Shot Demonstrations
- arxiv url: http://arxiv.org/abs/2404.02452v1
- Date: Wed, 3 Apr 2024 04:40:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 18:39:40.454854
- Title: Adaptive Cross-lingual Text Classification through In-Context One-Shot Demonstrations
- Title(参考訳): 文脈内ワンショットによる適応的言語間テキスト分類
- Authors: Emilio Villa-Cueva, A. Pastor López-Monroy, Fernando Sánchez-Vega, Thamar Solorio,
- Abstract要約: 我々は、IC-XLT(In-Context Cross-lingual Transfer)を導入して、分類タスクにおけるワンショット言語間移動にICT(In-Context Tuning)を利用する。
新たな概念は、コンテキストサンプルから学習するためにモデルをトレーニングし、その言語でOne-Shotコンテキストのデモを予測することによって、ターゲット言語への推論中にそれを適応させる、というものだ。
この結果から, IC-XLT はmT5モデルの言語横断性を向上し, 微調整により適応したZero およびFew-shot シナリオにおいて, プロンプトベースモデルよりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 47.89819316477715
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Zero-Shot Cross-lingual Transfer (ZS-XLT) utilizes a model trained in a source language to make predictions in another language, often with a performance loss. To alleviate this, additional improvements can be achieved through subsequent adaptation using examples in the target language. In this paper, we exploit In-Context Tuning (ICT) for One-Shot Cross-lingual transfer in the classification task by introducing In-Context Cross-lingual Transfer (IC-XLT). The novel concept involves training a model to learn from context examples and subsequently adapting it during inference to a target language by prepending a One-Shot context demonstration in that language. Our results show that IC-XLT successfully leverages target-language examples to improve the cross-lingual capabilities of the evaluated mT5 model, outperforming prompt-based models in the Zero and Few-shot scenarios adapted through fine-tuning. Moreover, we show that when source-language data is limited, the fine-tuning framework employed for IC-XLT performs comparably to prompt-based fine-tuning with significantly more training data in the source language.
- Abstract(参考訳): Zero-Shot Cross-lingual Transfer (ZS-XLT)は、ソース言語でトレーニングされたモデルを使用して、他の言語で予測を行う。
これを軽減するために、ターゲット言語の例を使用して、その後の適応を通じて、さらなる改善が達成される。
本稿では,IC-XLT(In-Context Cross-lingual Transfer)を導入して,分類タスクにおけるワンショット言語間移動にICT(In-Context Tuning)を利用する。
新たな概念は、コンテキストサンプルから学習するためにモデルをトレーニングし、その言語でOne-Shotコンテキストのデモを予測することによって、ターゲット言語への推論中にそれを適応させる、というものだ。
この結果から, IC-XLT はmT5モデルの言語横断性を向上し, 微調整により適応したZero およびFew-shot シナリオにおいて, プロンプトベースモデルよりも優れていることがわかった。
さらに、ソースコードデータに制限がある場合、IC-XLTで使用される微調整フレームワークは、ソース言語のトレーニングデータよりもはるかに多く、プロンプトベースの微調整と互換性があることを示す。
関連論文リスト
- X-SNS: Cross-Lingual Transfer Prediction through Sub-Network Similarity [19.15213046428148]
クロスランガルトランスファー(XLT)は、微調整プロセスに含まれていない言語で評価された場合、タスク上での性能をある程度保持する多言語言語モデルである。
本稿では,XLTの文脈における言語間の互換性を予測するプロキシとして,2言語間のサブネットワーク類似性の利用を提案する。
論文 参考訳(メタデータ) (2023-10-26T05:39:49Z) - Improving the Cross-Lingual Generalisation in Visual Question Answering [40.86774711775718]
多言語視覚言語事前学習モデルは、非英語データに適用した場合、言語間一般化が不十分であることを示す。
本研究は、ゼロショット言語間視覚質問応答(VQA)タスクにおいて、これらのモデルの低性能について検討する。
我々は,(1)類似性に基づく損失によるクロスエントロピー損失を増大させる言語的事前目標を導入し,トレーニング中にモデルを導くこと,(2)言語的一般化を改善し,モデルの修正を伴わずに分散を低減するタスク固有のサブネットワークを学習すること,(3)合成コードを用いたトレーニング例を強化すること,の3つの戦略を用いて言語的事前移動を改善する。
論文 参考訳(メタデータ) (2022-09-07T08:07:43Z) - Multi-Level Contrastive Learning for Cross-Lingual Alignment [35.33431650608965]
マルチリンガルBERT(mBERT)のような言語間事前学習モデルは、様々な言語間下流のNLPタスクにおいて大きな性能を発揮している。
本稿では,事前学習モデルの言語間能力の向上を図るために,マルチレベルコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-26T07:14:20Z) - CLIN-X: pre-trained language models and a study on cross-task transfer
for concept extraction in the clinical domain [22.846469609263416]
事前学習したCLIN-X(Clinical XLM-R)言語モデルを導入し、CLIN-Xが他の事前学習したトランスフォーマーモデルよりも優れていることを示す。
本研究は,250のラベル付き文が利用可能である場合に,47F1ポイントまで改善された注釈付きデータがないにもかかわらず,安定したモデル性能を示す。
本研究は,非標準領域における概念抽出におけるCLIN-Xとしての特殊言語モデルの重要性を強調した。
論文 参考訳(メタデータ) (2021-12-16T10:07:39Z) - Factorized Neural Transducer for Efficient Language Model Adaptation [51.81097243306204]
空白および語彙予測を分解し,ニューラルトランスデューサの因子化モデルを提案する。
この因子化は、音声認識のためのトランスデューサにスタンドアロン言語モデルの改善を移すことが期待できる。
提案した因子化ニューラルトランスデューサは、言語モデル適応にドメイン外テキストデータを使用する場合、15%から20%のWER改善が得られることを示す。
論文 参考訳(メタデータ) (2021-09-27T15:04:00Z) - Cross-lingual Transferring of Pre-trained Contextualized Language Models [73.97131976850424]
本稿では,PRLMのための新しい言語間モデル転送フレームワークTreLMを提案する。
シンボルの順序と言語間のシーケンス長の差に対処するため,中間的なTRILayer構造を提案する。
提案手法は,スクラッチから学習した言語モデルに対して,性能と効率の両面で,限られたデータで著しく優れることを示す。
論文 参考訳(メタデータ) (2021-07-27T06:51:13Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z) - Cross-lingual Spoken Language Understanding with Regularized
Representation Alignment [71.53159402053392]
外部リソースを使わずに言語間で単語レベルの表現と文レベルの表現を整列する正規化手法を提案する。
言語間言語理解タスクの実験により、我々のモデルは、数ショットとゼロショットの両方のシナリオにおいて、最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-09-30T08:56:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。