論文の概要: Multi-Level Contrastive Learning for Cross-Lingual Alignment
- arxiv url: http://arxiv.org/abs/2202.13083v1
- Date: Sat, 26 Feb 2022 07:14:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-01 15:38:17.576696
- Title: Multi-Level Contrastive Learning for Cross-Lingual Alignment
- Title(参考訳): 言語横断アライメントのためのマルチレベルコントラスト学習
- Authors: Beiduo Chen, Wu Guo, Bin Gu, Quan Liu, Yongchao Wang
- Abstract要約: マルチリンガルBERT(mBERT)のような言語間事前学習モデルは、様々な言語間下流のNLPタスクにおいて大きな性能を発揮している。
本稿では,事前学習モデルの言語間能力の向上を図るために,マルチレベルコントラスト学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 35.33431650608965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-language pre-trained models such as multilingual BERT (mBERT) have
achieved significant performance in various cross-lingual downstream NLP tasks.
This paper proposes a multi-level contrastive learning (ML-CTL) framework to
further improve the cross-lingual ability of pre-trained models. The proposed
method uses translated parallel data to encourage the model to generate similar
semantic embeddings for different languages. However, unlike the sentence-level
alignment used in most previous studies, in this paper, we explicitly integrate
the word-level information of each pair of parallel sentences into contrastive
learning. Moreover, cross-zero noise contrastive estimation (CZ-NCE) loss is
proposed to alleviate the impact of the floating-point error in the training
process with a small batch size. The proposed method significantly improves the
cross-lingual transfer ability of our basic model (mBERT) and outperforms on
multiple zero-shot cross-lingual downstream tasks compared to the same-size
models in the Xtreme benchmark.
- Abstract(参考訳): マルチリンガルBERT(mBERT)のような言語間事前学習モデルは、様々な言語間下流のNLPタスクにおいて大きな性能を発揮している。
本稿では,事前学習モデルの言語横断性を改善するため,マルチレベルコントラスト学習(ML-CTL)フレームワークを提案する。
提案手法は,翻訳された並列データを用いて,異なる言語に対して類似したセマンティック埋め込みを生成する。
しかし,これまでのほとんどの研究で用いられている文レベルのアライメントとは異なり,本論文では,各並列文の単語レベル情報をコントラスト学習に明示的に統合する。
さらに,学習過程における浮動小数点誤差の影響を小さいバッチサイズで緩和するために,クロスゼロノイズコントラスト推定(cz-nce)損失を提案する。
提案手法は,基本モデル (mBERT) の言語間伝達能力を大幅に向上し,Xtremeベンチマークの同サイズのモデルと比較して,複数のゼロショット言語間下流タスクにおいて性能が向上する。
関連論文リスト
- CrossIn: An Efficient Instruction Tuning Approach for Cross-Lingual Knowledge Alignment [38.35458193262633]
英語中心のモデルは、通常他の言語では準最適である。
そこで本研究では,言語間命令チューニングデータの混合合成を利用したCrossInという新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-18T06:20:50Z) - Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing [68.47787275021567]
言語間のセマンティックパーシングは、高いソース言語(例えば英語)から少ないトレーニングデータを持つ低リソース言語へのパーシング能力を伝達する。
そこで本稿では,最適輸送を用いた係り受け変数間の言語間相違を明示的に最小化することで,言語間セマンティック解析のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-07-09T04:52:31Z) - VECO 2.0: Cross-lingual Language Model Pre-training with
Multi-granularity Contrastive Learning [56.47303426167584]
複数粒度アライメントを持つコントラスト学習に基づく言語間事前学習モデルVECO2.0を提案する。
具体的には、シーケンス・ツー・シーケンスアライメントが誘導され、並列対の類似性を最大化し、非並列対を最小化する。
トークン・ツー・トークンのアライメントは、シソーラス辞書を介して発掘された同義トークンと、バイリンガルな例の他の未使用トークンとのギャップを埋めるために統合される。
論文 参考訳(メタデータ) (2023-04-17T12:23:41Z) - A Simple and Effective Method to Improve Zero-Shot Cross-Lingual
Transfer Learning [6.329304732560936]
既存のゼロショットのクロスリンガル転送法は、並列コーパスやバイリンガル辞書に依存している。
意味喪失のない仮想多言語埋め込みに英語の埋め込みを移すための埋め込み・プッシュ・アテンション・プル・ロバスト・ターゲットを提案する。
論文 参考訳(メタデータ) (2022-10-18T15:36:53Z) - Bridging the Gap between Language Models and Cross-Lingual Sequence
Labeling [101.74165219364264]
大規模言語間事前学習言語モデル (xPLM) は、言語間シーケンスラベリングタスクにおいて有効であることを示す。
大きな成功にもかかわらず、事前学習と微調整の段階の間には訓練対象のギャップがあるという経験的観察を描いている。
本稿では,まず,言語間インフォーマティブ・スパン・マスキング(CLISM)と呼ばれるxSLのための事前学習タスクを設計し,目的のギャップを解消する。
第2に、コントラスト学習を利用して入力並列表現間の一貫性を促進するContrAstive-Consistency Regularization (CACR)を提案する。
論文 参考訳(メタデータ) (2022-04-11T15:55:20Z) - Distributionally Robust Multilingual Machine Translation [94.51866646879337]
本稿では,分散的ロバストな最適化に基づくMNMT(Multilingual Neural Machine Translation)の新しい学習目標を提案する。
この目的を,反復的最適応答方式を用いて,大規模翻訳コーパスに対して実用的に最適化する方法を示す。
本手法は,多対一の翻訳設定と多対多の翻訳設定の両方において,平均と言語毎のパフォーマンスにおいて,強いベースライン法より一貫して優れる。
論文 参考訳(メタデータ) (2021-09-09T03:48:35Z) - Cross-lingual Transferring of Pre-trained Contextualized Language Models [73.97131976850424]
本稿では,PRLMのための新しい言語間モデル転送フレームワークTreLMを提案する。
シンボルの順序と言語間のシーケンス長の差に対処するため,中間的なTRILayer構造を提案する。
提案手法は,スクラッチから学習した言語モデルに対して,性能と効率の両面で,限られたデータで著しく優れることを示す。
論文 参考訳(メタデータ) (2021-07-27T06:51:13Z) - Lightweight Cross-Lingual Sentence Representation Learning [57.9365829513914]
メモリ効率のよい言語間文表現を生成するために,2層のみの軽量なデュアルトランスフォーマーアーキテクチャを導入する。
本稿では,既存のシングルワードマスキング言語モデルと,新たに提案されたクロスランガルトークンレベルの再構築タスクを組み合わせた,新しい言語間言語モデルを提案する。
論文 参考訳(メタデータ) (2021-05-28T14:10:48Z) - Towards Multi-Sense Cross-Lingual Alignment of Contextual Embeddings [41.148892848434585]
本稿では,バイリンガル辞書からのクロスリンガル信号のみを活用して,文脈埋め込みを感覚レベルで整列する新しい枠組みを提案する。
我々はまず,単語感覚を明示的にモデル化するために,新しい感覚認識型クロスエントロピー損失を提案する。
次に,言語間モデル事前学習のための感覚認識型クロスエントロピー損失と,複数の言語対に対する事前訓練型クロス言語モデルの上に,感覚アライメントの目的を提案する。
論文 参考訳(メタデータ) (2021-03-11T04:55:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。