論文の概要: Creating a Trajectory for Code Writing: Algorithmic Reasoning Tasks
- arxiv url: http://arxiv.org/abs/2404.02464v1
- Date: Wed, 3 Apr 2024 05:07:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 18:29:43.556733
- Title: Creating a Trajectory for Code Writing: Algorithmic Reasoning Tasks
- Title(参考訳): コード記述のための軌道作成:アルゴリズム推論タスク
- Authors: Shruthi Ravikumar, Margaret Hamilton, Charles Thevathayan, Maria Spichkova, Kashif Ali, Gayan Wijesinghe,
- Abstract要約: 本稿では,楽器とその検証に用いる機械学習モデルについて述べる。
我々は,学期最後の週に導入プログラミングコースで収集したデータを用いてきた。
先行研究は、ARTタイプの楽器を特定の機械学習モデルと組み合わせて効果的な学習軌道として機能させることができることを示唆している。
- 参考スコア(独自算出の注目度): 0.923607423080658
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Many students in introductory programming courses fare poorly in the code writing tasks of the final summative assessment. Such tasks are designed to assess whether novices have developed the analytical skills to translate from the given problem domain to coding. In the past researchers have used instruments such as code-explain and found that the extent of cognitive depth reached in these tasks correlated well with code writing ability. However, the need for manual marking and personalized interviews used for identifying cognitive difficulties limited the study to a small group of stragglers. To extend this work to larger groups, we have devised several question types with varying cognitive demands collectively called Algorithmic Reasoning Tasks (ARTs), which do not require manual marking. These tasks require levels of reasoning which can define a learning trajectory. This paper describes these instruments and the machine learning models used for validating them. We have used the data collected in an introductory programming course in the penultimate week of the semester which required attempting ART type instruments and code writing. Our preliminary research suggests ART type instruments can be combined with specific machine learning models to act as an effective learning trajectory and early prediction of code-writing skills.
- Abstract(参考訳): 初等プログラミングコースの多くの学生は、最終的な要約評価のタスクを書くのにあまり役に立たない。
このようなタスクは、初心者が与えられた問題領域からコーディングに変換する分析スキルを開発したかどうかを評価するように設計されている。
過去の研究者は、コード説明のような道具を使用して、これらのタスクで到達した認知深度が、コード記述能力とよく相関していることを発見した。
しかし、認知障害の識別に使用する手動マーキングとパーソナライズされたインタビューの必要性は、少数のストラグラーに限られていた。
この作業を大規模グループに拡張するために、手動マーキングを必要としないアルゴリズム推論タスク(ART)と呼ばれる、様々な認知的要求を伴う質問タイプを考案した。
これらのタスクは、学習軌跡を定義することができる推論のレベルを必要とする。
本稿では,これらの機器とその検証に用いる機械学習モデルについて述べる。
我々は,ART型楽器の試行とコードライティングを必要とする学期の最終週に,導入プログラミングコースで収集したデータを使用した。
我々の予備的な研究は、ARTタイプの楽器を特定の機械学習モデルと組み合わせることで、効果的な学習軌跡として機能し、コード書きのスキルを早期に予測できることを示唆している。
関連論文リスト
- Code Compass: A Study on the Challenges of Navigating Unfamiliar Codebases [2.808331566391181]
これらの問題に対処するための新しいツールであるCodeを提案する。
本研究は,現在のツールと方法論における大きなギャップを浮き彫りにしている。
私たちのフォーマティブな調査は、開発者がドキュメントをナビゲートする時間をいかに効率的に削減するかを示しています。
論文 参考訳(メタデータ) (2024-05-10T06:58:31Z) - Pre-training Multi-task Contrastive Learning Models for Scientific
Literature Understanding [52.723297744257536]
事前学習言語モデル(LM)は、科学文献理解タスクにおいて有効であることを示す。
文献理解タスク間の共通知識共有を容易にするために,マルチタスクのコントラスト学習フレームワークであるSciMultを提案する。
論文 参考訳(メタデータ) (2023-05-23T16:47:22Z) - Supporting Qualitative Analysis with Large Language Models: Combining
Codebook with GPT-3 for Deductive Coding [45.5690960017762]
本研究は,大言語モデル (LLM) を用いた帰納的符号化支援について検討する。
タスク固有のモデルを訓練する代わりに、事前訓練されたLLMは、素早い学習を通じて微調整することなく、様々なタスクに直接使用することができる。
好奇心駆動型問合せコーディングタスクをケーススタディとして, GPT-3とエキスパートドラフトコードブックを組み合わせることで, 提案手法は有意な一致を達成し, 有能な結果を得た。
論文 参考訳(メタデータ) (2023-04-17T04:52:43Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
本研究では,不確実性に関する情報を伝達することで,プログラマがより迅速かつ正確にコードを生成することができるかどうかを検討する。
トークンのハイライトは、編集される可能性が最も高いので、タスクの完了が早くなり、よりターゲットを絞った編集が可能になることがわかりました。
論文 参考訳(メタデータ) (2023-02-14T18:43:34Z) - Explainable AI for Pre-Trained Code Models: What Do They Learn? When
They Do Not Work? [4.573310303307945]
下流タスクの一連のソフトウェアエンジニアリング上のコードのための,最近の2つの大規模言語モデル (LLM) について検討する。
CodeBERTとGraphCodeBERTは、これらのタスクで何を学ぶか(ソースコードトークンタイプに関して、最も注意を払っている)を特定します。
モデルが期待通りに機能しない場合の一般的なパターンをいくつか示し、推奨する。
論文 参考訳(メタデータ) (2022-11-23T10:07:20Z) - AANG: Automating Auxiliary Learning [110.36191309793135]
補助目的の集合を自動生成する手法を提案する。
我々は、新しい統合分類体系の中で既存の目的を分解し、それらの関係を識別し、発見された構造に基づいて新しい目的を創出することで、これを実現する。
これにより、生成された目的物の空間を探索し、指定されたエンドタスクに最も有用なものを見つけるための、原理的かつ効率的なアルゴリズムが導かれる。
論文 参考訳(メタデータ) (2022-05-27T16:32:28Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
本研究では,ウェアラブル型行動認識タスクにおけるコントラスト学習について検討する。
本稿では,PyTorchライブラリのtextttCL-HAR について述べる。
論文 参考訳(メタデータ) (2022-02-12T06:10:15Z) - Toward Educator-focused Automated Scoring Systems for Reading and
Writing [0.0]
本稿では,データとラベルの可用性,信頼性と拡張性,ドメインスコアリング,プロンプトとソースの多様性,伝達学習といった課題に対処する。
モデルトレーニングコストを増大させることなく、エッセイの長さを重要な特徴として保持する技術を採用している。
論文 参考訳(メタデータ) (2021-12-22T15:44:30Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
機械学習は、データのパターンを認識し、予測モデリングに使用するアルゴリズムの開発と応用に関係している。
ディープラーニングは、独自の機械学習のサブフィールドになっている。
生物学的研究の文脈において、ディープラーニングは高次元の生物学的データから新しい洞察を導き出すためにますます使われてきた。
論文 参考訳(メタデータ) (2021-05-29T21:02:44Z) - Curriculum Learning: A Survey [65.31516318260759]
カリキュラム学習戦略は、機械学習のあらゆる分野で成功している。
我々は,様々な分類基準を考慮して,カリキュラム学習アプローチの分類を手作業で構築する。
集約型クラスタリングアルゴリズムを用いて,カリキュラム学習手法の階層木を構築する。
論文 参考訳(メタデータ) (2021-01-25T20:08:32Z) - Towards Improved Model Design for Authorship Identification: A Survey on
Writing Style Understanding [30.642840676899734]
著者識別タスクは言語スタイルに大きく依存している。
手作りの機能セットに基づく従来の機械学習手法は、すでにパフォーマンスの限界に近づいている。
スタイル関連タスクにおける卓越した手法を概説し、それらの組み合わせがトップパフォーマンスモデルでどのように使われているかを分析する。
論文 参考訳(メタデータ) (2020-09-30T05:17:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。