論文の概要: Probing the Unknown: Exploring Student Interactions with Probeable Problems at Scale in Introductory Programming
- arxiv url: http://arxiv.org/abs/2504.11723v1
- Date: Wed, 16 Apr 2025 02:50:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:40:10.408277
- Title: Probing the Unknown: Exploring Student Interactions with Probeable Problems at Scale in Introductory Programming
- Title(参考訳): 未知の証明: 入門プログラミングにおける大規模課題と学生のインタラクションの探索
- Authors: Paul Denny, Viraj Kumar, Stephen MacNeil, James Prather, Juho Leinonen,
- Abstract要約: 本研究では、意図的な曖昧さや不完全な仕様を持つ自動段階的タスクであるProbeable Problems'の使用について検討する。
このような問題に対して、学生はテストのインプットを提出するか、あるいは「調査」し、実施前の要件を明らかにする必要がある。
コーディング前に期待される振る舞いを徹底的に探求するなど、体系的な戦略は、間違ったコードへの提出を減らし、コースの成功と相関する結果となった。
- 参考スコア(独自算出の注目度): 4.1153199495993364
- License:
- Abstract: Introductory programming courses often rely on small code-writing exercises that have clearly specified problem statements. This limits opportunities for students to practice how to clarify ambiguous requirements -- a critical skill in real-world programming. In addition, the emerging capabilities of large language models (LLMs) to produce code from well-defined specifications may harm student engagement with traditional programming exercises. This study explores the use of ``Probeable Problems'', automatically gradable tasks that have deliberately vague or incomplete specifications. Such problems require students to submit test inputs, or `probes', to clarify requirements before implementation. Through analysis of over 40,000 probes in an introductory course, we identify patterns linking probing behaviors to task success. Systematic strategies, such as thoroughly exploring expected behavior before coding, resulted in fewer incorrect code submissions and correlated with course success. Feedback from nearly 1,000 participants highlighted the challenges and real-world relevance of these tasks, as well as benefits to critical thinking and metacognitive skills. Probeable Problems are easy to set up and deploy at scale, and help students recognize and resolve uncertainties in programming problems.
- Abstract(参考訳): 入門プログラミングコースは、しばしば問題ステートメントを明確に指定した小さなコードを書き込む演習に依存します。
これにより、学生があいまいな要件を明確にする方法を実践する機会が制限される。
さらに、明確に定義された仕様からコードを生成するための大規模言語モデル(LLM)の出現する能力は、従来のプログラミング演習に対する学生の関与を損なう可能性がある。
本研究では、意図的な曖昧さや不完全な仕様を持つ自動段階的タスクである `Probeable Problems'' の使用について検討する。
このような問題は、学生がテストインプット、すなわち'プローブ'を提出して、実装前の要件を明確にすることを要求する。
導入コースにおける4万以上のプローブの分析を通じて、探索行動とタスク成功を関連付けるパターンを同定する。
コーディング前に期待される振る舞いを徹底的に探求するなど、体系的な戦略は、間違ったコードへの提出を減らし、コースの成功と相関する結果となった。
約1000人の参加者からのフィードバックは、これらのタスクの課題と現実の関連性を強調し、批判的思考とメタ認知スキルのメリットを強調した。
確率的問題は、大規模な設定と展開が容易であり、プログラミング問題における不確実性を認識し、解決するのに役立つ。
関連論文リスト
- Integrating Natural Language Prompting Tasks in Introductory Programming Courses [3.907735250728617]
本報告では、導入プログラミングコースに2つのプロンプトに焦点を当てたアクティビティを組み込むことについて検討する。
第一に、学生は自然言語のプロンプトを書き、構文上の問題解決を強調することで、計算問題を解く必要がある。
2つ目は、プロンプトとコードの関係を理解するために、提供されたフラグメントに相当するコードを生成するプロンプトを作成することである。
論文 参考訳(メタデータ) (2024-10-04T01:03:25Z) - Estimating Difficulty Levels of Programming Problems with Pre-trained Model [18.92661958433282]
プログラミング問題の難易度は、生徒の適応学習を導く上で不可欠な基準となっている。
テキスト記述とコードの解の例から,各プログラム問題の難易度自動推定の問題を定式化する。
この問題に対処するため,テキストモダリティとコードモダリティの2つの事前学習モデルを統一モデルに分割することを提案する。
論文 参考訳(メタデータ) (2024-06-13T05:38:20Z) - Creating a Trajectory for Code Writing: Algorithmic Reasoning Tasks [0.923607423080658]
本稿では,楽器とその検証に用いる機械学習モデルについて述べる。
我々は,学期最後の週に導入プログラミングコースで収集したデータを用いてきた。
先行研究は、ARTタイプの楽器を特定の機械学習モデルと組み合わせて効果的な学習軌道として機能させることができることを示唆している。
論文 参考訳(メタデータ) (2024-04-03T05:07:01Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
CoT(Chain-of- Thought)は、言語モデルのプロンプトとして、推論タスク全体で素晴らしいパフォーマンスを示す。
そこで本稿では,大規模言語モデルの推論プロセスを自動的にガイドする,新たなプロンプト手法であるアナログプロンプトを導入する。
論文 参考訳(メタデータ) (2023-10-03T00:57:26Z) - Giving Feedback on Interactive Student Programs with Meta-Exploration [74.5597783609281]
ウェブサイトやゲームのようなインタラクティブなソフトウェアを開発することは、特にコンピュータ科学を学ぶための魅力的な方法である。
標準的アプローチでは、インストラクターは、学生が実装した対話型プログラムを手動で評価する必要がある。
Code.orgのような何百万ものオンラインプラットフォームは、インタラクティブなプログラムを実装するための代入に関するフィードバックを提供することができない。
論文 参考訳(メタデータ) (2022-11-16T10:00:23Z) - Competition-Level Code Generation with AlphaCode [74.87216298566942]
より深い推論を必要とする問題に対する新しいソリューションを作成することができるコード生成システムであるAlphaCodeを紹介する。
Codeforcesプラットフォームにおける最近のプログラミングコンペティションのシミュレーション評価において、AlphaCodeは平均54.3%のランキングを達成した。
論文 参考訳(メタデータ) (2022-02-08T23:16:31Z) - Steps Before Syntax: Helping Novice Programmers Solve Problems using the
PCDIT Framework [2.768397481213625]
初心者プログラマは、直面する高い認知的負荷のために、しばしば問題解決に苦労します。
多くの入門プログラミングコースは、その途中で問題解決スキルが取得されるという前提で、それを明示的に教えていない。
問題仕様を命令型プログラミング言語のための実装およびテストされたソリューションに変換するプロセスを通じて、初心者プログラマを誘導するための足場を提供する非線形問題解決フレームワークである 'PCDIT' を提案する。
論文 参考訳(メタデータ) (2021-09-18T10:31:15Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
本稿では,フィードバックを数発の分類として提供するという課題について考察する。
メタラーナーは、インストラクターによるいくつかの例から、新しいプログラミング質問に関する学生のコードにフィードバックを与えるように適応します。
本手法は,第1段階の大学が提供したプログラムコースにおいて,16,000名の学生試験ソリューションに対するフィードバックの提供に成功している。
論文 参考訳(メタデータ) (2021-07-23T22:41:28Z) - Measuring Coding Challenge Competence With APPS [54.22600767666257]
コード生成のベンチマークであるAPPSを紹介する。
私たちのベンチマークには1万の問題が含まれています。
GPT-Neoのような最近のモデルでは、導入問題のテストケースの約15%をパスできる。
論文 参考訳(メタデータ) (2021-05-20T17:58:42Z) - Toward Semi-Automatic Misconception Discovery Using Code Embeddings [4.369757255496184]
本論文では,計算コースにおける生徒のプログラムコードから問題特異的な誤解を半自動的に発見する手法を提案する。
ブロックベースのプログラミングデータセットでモデルをトレーニングし、学習した埋め込みをクラスタの不正な学生の応募に使用しました。
論文 参考訳(メタデータ) (2021-03-07T20:32:41Z) - Probably Approximately Correct Constrained Learning [135.48447120228658]
我々は、ほぼ正しい学習フレームワーク(PAC)に基づく一般化理論を開発する。
PAC学習可能なクラスも制約のある学習者であるという意味では,学習者の導入は学習問題を難しくするものではないことを示す。
このソリューションの特性を分析し,制約付き学習が公平でロバストな分類における問題にどのように対処できるかを説明する。
論文 参考訳(メタデータ) (2020-06-09T19:59:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。