論文の概要: Code Compass: A Study on the Challenges of Navigating Unfamiliar Codebases
- arxiv url: http://arxiv.org/abs/2405.06271v1
- Date: Fri, 10 May 2024 06:58:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 16:27:43.235062
- Title: Code Compass: A Study on the Challenges of Navigating Unfamiliar Codebases
- Title(参考訳): コードコンパス: 馴染みのないコードベースをナビゲートする上での課題に関する研究
- Authors: Ekansh Agrawal, Omair Alam, Chetan Goenka, Medha Iyer, Isabela Moise, Ashish Pandian, Bren Paul,
- Abstract要約: これらの問題に対処するための新しいツールであるCodeを提案する。
本研究は,現在のツールと方法論における大きなギャップを浮き彫りにしている。
私たちのフォーマティブな調査は、開発者がドキュメントをナビゲートする時間をいかに効率的に削減するかを示しています。
- 参考スコア(独自算出の注目度): 2.808331566391181
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In our research, we investigate the challenges that software engineers face during program comprehension, particularly when debugging unfamiliar codebases. We propose a novel tool, CodeCompass, to address these issues. Our study highlights a significant gap in current tools and methodologies, especially the difficulty developers encounter in effectively utilizing documentation alongside code exploration. CodeCompass tackles these challenges by seamlessly integrating documentation within the IDE, offering context-aware suggestions and visualizations that streamline the debugging process. Our formative study demonstrates how effectively the tool reduces the time developers spend navigating documentation, thereby enhancing code comprehension and task completion rates. Future work will focus on automating the process of annotating codebases, creating sandbox tasks, and providing dynamic support. These innovations could potentially transform software development practices by improving the accessibility and efficiency of program comprehension tools.
- Abstract(参考訳): 本研究では,プログラム理解においてソフトウェア技術者が直面する課題,特に不慣れなコードベースのデバッグについて検討する。
これらの問題に対処するための新しいツールであるCodeCompassを提案する。
私たちの研究は、現在のツールと方法論における大きなギャップ、特に開発者がコード探索とともにドキュメンテーションを効果的に活用することの難しさを浮き彫りにしています。
CodeCompassはこれらの課題に対処し、IDE内にドキュメントをシームレスに統合し、デバッグプロセスを合理化するためのコンテキスト対応の提案と視覚化を提供する。
私たちのフォーマティブな調査は、開発者がドキュメントをナビゲートする時間を効果的に削減し、コードの理解とタスク完了率を高めることを示しています。
今後の作業は、コードベースのアノテートプロセスの自動化、サンドボックスタスクの作成、動的サポートの提供に注力する予定である。
これらのイノベーションは、プログラム理解ツールのアクセシビリティと効率を改善することによって、ソフトウェア開発プラクティスを変える可能性がある。
関連論文リスト
- Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
Code-Development Benchmark (Codev-Bench)は、細粒度で現実世界、リポジトリレベル、開発者中心の評価フレームワークです。
Codev-Agentは、リポジトリのクローリングを自動化し、実行環境を構築し、既存のユニットテストから動的呼び出しチェーンを抽出し、データ漏洩を避けるために新しいテストサンプルを生成するエージェントベースのシステムである。
論文 参考訳(メタデータ) (2024-10-02T09:11:10Z) - No Man is an Island: Towards Fully Automatic Programming by Code Search, Code Generation and Program Repair [9.562123938545522]
ツールネームは、様々なコード検索、生成、修復ツールを統合することができ、これら3つの研究領域を初めて組み合わせることができる。
例えば、CodeLlamaは62.53%の改善で267のプログラミング問題を解決するのに役立ちます。
論文 参考訳(メタデータ) (2024-09-05T06:24:29Z) - Creating a Trajectory for Code Writing: Algorithmic Reasoning Tasks [0.923607423080658]
本稿では,楽器とその検証に用いる機械学習モデルについて述べる。
我々は,学期最後の週に導入プログラミングコースで収集したデータを用いてきた。
先行研究は、ARTタイプの楽器を特定の機械学習モデルと組み合わせて効果的な学習軌道として機能させることができることを示唆している。
論文 参考訳(メタデータ) (2024-04-03T05:07:01Z) - DevBench: A Comprehensive Benchmark for Software Development [72.24266814625685]
DevBenchは、ソフトウェア開発ライフサイクルのさまざまな段階にわたる大規模言語モデル(LLM)を評価するベンチマークである。
GPT-4-Turboを含む現在のLLMは、DevBench内での課題の解決に失敗している。
本研究は,LLMを現実のプログラミングアプリケーションに展開する上で,現実的な知見を提供するものである。
論文 参考訳(メタデータ) (2024-03-13T15:13:44Z) - Charting a Path to Efficient Onboarding: The Role of Software
Visualization [49.1574468325115]
本研究は,ソフトウェアビジュアライゼーションツールを用いたマネージャ,リーダ,開発者の親しみやすさを探求することを目的としている。
本手法は, 質問紙調査と半構造化面接を用いて, 実践者から収集したデータの量的, 質的分析を取り入れた。
論文 参考訳(メタデータ) (2024-01-17T21:30:45Z) - Collaborative, Code-Proximal Dynamic Software Visualization within Code
Editors [55.57032418885258]
本稿では,コードエディタに組み込むソフトウェアビジュアライゼーション手法の設計と実装について紹介する。
私たちのコントリビューションは、ソフトウェアシステムの実行時の動作の動的解析を使用するという点で、関連する作業と異なります。
私たちの視覚化アプローチは、一般的なリモートペアプログラミングツールを強化し、共有コード都市を利用することで協調的に使用できます。
論文 参考訳(メタデータ) (2023-08-30T06:35:40Z) - "It's Weird That it Knows What I Want": Usability and Interactions with
Copilot for Novice Programmers [5.317693153442043]
本稿では,このようなコード自動生成ツールであるGithub Copilotを用いて,学生を入門レベルで観察する最初の研究について述べる。
我々は,この技術の学習におけるメリットと落とし穴に対する学生の認識を探求し,新たに観察された相互作用パターンを提示し,学生が直面する認知的・メタ認知的困難を議論する。
論文 参考訳(メタデータ) (2023-04-05T15:07:50Z) - A Large-Scale Survey on the Usability of AI Programming Assistants:
Successes and Challenges [23.467373994306524]
実際には、開発者はAIプログラミングアシスタントの最初の提案を高い頻度で受け入れない。
これらのツールを使用して開発者のプラクティスを理解するため、多数の開発者を対象に調査を実施しました。
開発者がAIプログラミングアシスタントを使用する動機は、開発者がキーストロークを減らしたり、プログラミングタスクを素早く終了したり、構文をリコールするのに役立つためである。
また、開発者がこれらのツールを使用しない最も重要な理由は、これらのツールが特定の機能的あるいは非機能的要件に対処するコードを出力していないためです。
論文 参考訳(メタデータ) (2023-03-30T03:21:53Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
本研究では,不確実性に関する情報を伝達することで,プログラマがより迅速かつ正確にコードを生成することができるかどうかを検討する。
トークンのハイライトは、編集される可能性が最も高いので、タスクの完了が早くなり、よりターゲットを絞った編集が可能になることがわかりました。
論文 参考訳(メタデータ) (2023-02-14T18:43:34Z) - Chatbots As Fluent Polyglots: Revisiting Breakthrough Code Snippets [0.0]
この研究は、AI駆動のコードアシスタントを使用して、現代技術を形成する影響力のあるコンピュータコードの選択を分析する。
この研究の最初の貢献は、過去50年で最も重要なコードの進歩の半分を調査することであった。
論文 参考訳(メタデータ) (2023-01-05T23:17:17Z) - ReACC: A Retrieval-Augmented Code Completion Framework [53.49707123661763]
本稿では,語彙のコピーと類似したセマンティクスを持つコード参照の両方を検索により活用する検索拡張コード補完フレームワークを提案する。
我々は,Python および Java プログラミング言語のコード補完タスクにおけるアプローチを評価し,CodeXGLUE ベンチマークで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-03-15T08:25:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。