論文の概要: Affective-NLI: Towards Accurate and Interpretable Personality Recognition in Conversation
- arxiv url: http://arxiv.org/abs/2404.02589v1
- Date: Wed, 3 Apr 2024 09:14:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 17:50:35.126288
- Title: Affective-NLI: Towards Accurate and Interpretable Personality Recognition in Conversation
- Title(参考訳): Affective-NLI:会話における個人性認識の精度と解釈に向けて
- Authors: Zhiyuan Wen, Jiannong Cao, Yu Yang, Ruosong Yang, Shuaiqi Liu,
- Abstract要約: 会話におけるパーソナリティ認識(PRC)は、テキスト対話コンテンツを通して話者の性格特性を識別することを目的としている。
本稿では,PRCの正確かつ解釈可能なAffective Natural Language Inference (Affective-NLI)を提案する。
- 参考スコア(独自算出の注目度): 30.820334868031537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personality Recognition in Conversation (PRC) aims to identify the personality traits of speakers through textual dialogue content. It is essential for providing personalized services in various applications of Human-Computer Interaction (HCI), such as AI-based mental therapy and companion robots for the elderly. Most recent studies analyze the dialog content for personality classification yet overlook two major concerns that hinder their performance. First, crucial implicit factors contained in conversation, such as emotions that reflect the speakers' personalities are ignored. Second, only focusing on the input dialog content disregards the semantic understanding of personality itself, which reduces the interpretability of the results. In this paper, we propose Affective Natural Language Inference (Affective-NLI) for accurate and interpretable PRC. To utilize affectivity within dialog content for accurate personality recognition, we fine-tuned a pre-trained language model specifically for emotion recognition in conversations, facilitating real-time affective annotations for utterances. For interpretability of recognition results, we formulate personality recognition as an NLI problem by determining whether the textual description of personality labels is entailed by the dialog content. Extensive experiments on two daily conversation datasets suggest that Affective-NLI significantly outperforms (by 6%-7%) state-of-the-art approaches. Additionally, our Flow experiment demonstrates that Affective-NLI can accurately recognize the speaker's personality in the early stages of conversations by surpassing state-of-the-art methods with 22%-34%.
- Abstract(参考訳): 会話におけるパーソナリティ認識(PRC)は、テキスト対話コンテンツを通して話者の性格特性を識別することを目的としている。
人間-コンピュータインタラクション(HCI)の様々な応用にパーソナライズされたサービスを提供するためには、AIベースのメンタルセラピーや高齢者向けのロボットと連携することが不可欠である。
最近の研究は、人格分類のためのダイアログの内容を分析するが、その性能を阻害する2つの主要な懸念を見落としている。
まず、話者の個性を反映した感情など、会話に含まれる重要な暗黙的要因を無視する。
第二に、入力ダイアログの内容にのみ注目することは、人格自体の意味的理解を無視し、その結果の解釈可能性を減らす。
本稿では,正確かつ解釈可能なPRCのためのAffective Natural Language Inference (Affective-NLI)を提案する。
対話内容中の感情を正確な人格認識に活用するために,会話中の感情認識に特化した事前学習言語モデルを微調整し,発話に対するリアルタイム感情アノテーションを容易にする。
認識結果の解釈性について,人格ラベルのテキスト記述が対話内容に関連付けられているかどうかを判定することにより,NLI問題として人格認識を定式化する。
2つの日々の会話データセットに対する大規模な実験は、Affective-NLIが最先端のアプローチで(6%-7%)著しく優れていたことを示唆している。
さらに,Affective-NLIは22%~34%の最先端手法を超越することで,会話の初期段階における話者の性格を正確に認識できることを示す。
関連論文リスト
- Personality-affected Emotion Generation in Dialog Systems [67.40609683389947]
ダイアログシステムに与えられた個性に基づいて感情を生成する新しいタスクであるパーソナリティ影響感情生成を提案する。
本課題の課題,すなわち,(1)個性と感情的要因を不均一に統合し,(2)対話場面における多粒性感情情報を抽出する。
その結果,感情生成性能はマクロF1では13%,重み付きF1では5%向上することが示唆された。
論文 参考訳(メタデータ) (2024-04-03T08:48:50Z) - Enhancing Personality Recognition in Dialogue by Data Augmentation and
Heterogeneous Conversational Graph Networks [30.33718960981521]
パーソナリティ認識は、ユーザ適応応答をカスタマイズするロボットの能力を高めるのに有用である。
この課題の1つは、既存の対話コーパスにおける話者の限られた数である。
論文 参考訳(メタデータ) (2024-01-11T12:27:33Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
PsyCoTと呼ばれる新しい人格検出手法を提案する。これは、個人がマルチターン対話方式で心理的質問を完遂する方法を模倣するものである。
実験の結果,PsyCoTは人格検出におけるGPT-3.5の性能とロバスト性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-31T08:23:33Z) - Affect Recognition in Conversations Using Large Language Models [9.426541302671545]
感情、気分、感情を含む影響認識は、人間のコミュニケーションにおいて重要な役割を果たす。
本研究は,会話における人間の影響を認識するための大規模言語モデル(LLM)の能力について考察する。
論文 参考訳(メタデータ) (2023-09-22T14:11:23Z) - deep learning of segment-level feature representation for speech emotion
recognition in conversations [9.432208348863336]
そこで本稿では,意図的文脈依存と話者感応的相互作用をキャプチャする対話型音声感情認識手法を提案する。
まず、事前訓練されたVGGishモデルを用いて、個々の発話におけるセグメントベース音声表現を抽出する。
第2に、注意的双方向リカレントユニット(GRU)は、文脈に敏感な情報をモデル化し、話者内および話者間依存関係を共同で探索する。
論文 参考訳(メタデータ) (2023-02-05T16:15:46Z) - CPED: A Large-Scale Chinese Personalized and Emotional Dialogue Dataset
for Conversational AI [48.67259855309959]
会話型AIのための既存のデータセットのほとんどは、人間の個性や感情を無視している。
CPEDは,中国における大規模パーソナライズされた感情対話データセットである。
CPEDには40のテレビ番組から392人の話者の12K以上の対話が含まれている。
論文 参考訳(メタデータ) (2022-05-29T17:45:12Z) - Learning Graph Representation of Person-specific Cognitive Processes
from Audio-visual Behaviours for Automatic Personality Recognition [17.428626029689653]
本稿では,対象対象者固有の認知を,個人固有のCNNアーキテクチャの形で表現することを提案する。
各人物固有のCNNは、ニューラルアーキテクチャサーチ(NAS)と新しい適応損失関数によって探索される。
実験の結果,生成したグラフ表現は対象者の性格特性とよく関連していることがわかった。
論文 参考訳(メタデータ) (2021-10-26T11:04:23Z) - Perception Point: Identifying Critical Learning Periods in Speech for
Bilingual Networks [58.24134321728942]
ディープニューラルベース視覚唇読解モデルにおける認知的側面を比較し,識別する。
我々は、認知心理学におけるこれらの理論と独自のモデリングの間に強い相関関係を観察する。
論文 参考訳(メタデータ) (2021-10-13T05:30:50Z) - Disambiguating Affective Stimulus Associations for Robot Perception and
Dialogue [67.89143112645556]
知覚された聴覚刺激と感情表現の関連性を学ぶことができるNICOロボットを提供します。
NICOは、感情駆動対話システムの助けを借りて、個人と特定の刺激の両方でこれを行うことができる。
ロボットは、実際のHRIシナリオにおいて、被験者の聴覚刺激の楽しさを判断するために、この情報を利用することができる。
論文 参考訳(メタデータ) (2021-03-05T20:55:48Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
認知科学の研究は、理解が高品質なチャット会話に不可欠なシグナルであることを示唆している。
そこで我々は,P2 Botを提案する。このP2 Botは,理解を明示的にモデル化することを目的とした送信機受信者ベースのフレームワークである。
論文 参考訳(メタデータ) (2020-04-11T12:51:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。